Supplementary Material for Straintunable magnetic and electronic properties of CuCl₃ monolayer

Like Lin¹, Hanlu Liu¹, Yineng Huang², Weiyu Long¹, Jian Zhou¹, Xue Yao³,

Qing Jiang³, and Haiming Lu^{1,2,*}

¹College of Engineering and Applied Sciences, Jiangsu Key Laboratory of

Artificial Functional Materials, Collaborative Innovation Center of

Advanced Microstructures, Nanjing University, Nanjing 210093, P. R.

China

²School of Physical Science and Technology, Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, P. R. China

³Key Laboratory of Automobile Materials, Ministry of Education, School of

Materials Science and Engineering, Jilin University, Changchun 130022, P.

R. China

* Correspondence:haimlu@nju.edu.cn(H.M.Lu)

Fig. S1. (a) The *d* orbital PDOS of Cu atom and (b) the *p* orbital PDOS of Cl atom.

Fig. S2. Energy difference between FM and AFM CuCl₃ monolayer as a function of the

strain calculated by the LSDA.

Fig. S3. (a) The potential energy fluctuation during the AIMD simulation at 300 K and (b) the top view of the atomic configuration of $4 \times 4 \times 1$ CuCl₃ monolayer after 2.5 ps.