Supplementary Material for Strain-tunable magnetic and electronic properties of CuCl$_3$ monolayer

Like Lin1, Hanlu Liu1, Yineng Huang2, Weiyu Long1, Jian Zhou1, Xue Yao3, Qing Jiang3, and Haiming Lu1,2,*

1College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China

2School of Physical Science and Technology, Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, P. R. China

3Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130022, P. R. China

*Correspondence:haimlu@nju.edu.cn(H.M.Lu)
Fig. S1. (a) The d orbital PDOS of Cu atom and (b) the p orbital PDOS of Cl atom.

Fig. S2. Energy difference between FM and AFM CuCl$_3$ monolayer as a function of the strain calculated by the LSDA.
Fig. S3. (a) The potential energy fluctuation during the AIMD simulation at 300 K and (b) the top view of the atomic configuration of 4×4×1 CuCl$_3$ monolayer after 2.5 ps.