Supporting Information Highly Sensitive, Selective and Low-Power Consumption MetalloporphyrinBased Junctions for Nitrogen Monoxide Detection with Excellent Recovery

Azar Ostovan* and S. Shahab Naghavi*

Department of Physical and Computational Chemistry, Shahid Beheshti University, 1983969411 Tehran, Iran

E-mail: a_ostovan@sbu.ac.ir; s_naghavi@sbu.ac.ir

Device	E_A	E_B	E_T
Sc	3×10^{-4}	0.00	0.053
Ti	3×10^{-4}	0.00	0.144
V	0.21	0.00	0.014
Cr	1.09	0.00	0.001
Mn	0.001	0.00	0.001
Fe	12×10^{-4}	0.00	8×10^{-4}
Co	0.001	0.00	0.003
Ni	0.001	0.00	1×10^{-4}
Cu	0.001	0.00	0.023
Zn	0.007	0.00	0.012

Table S1: Calculated relative adsorption energy (E_{ads}, eV) of various configurations of NO binding over studied *M*Pors. The considered configurations are shown in Figure S2.

Device	E_{ads}	d	CT
Sc	-2.09	1.79	-0.61
Ti	-2.04	1.83	-1.02
V	-1.78	1.90	-0.53
Cr	-0.56	1.79	-0.32
Mn	-0.36	1.91	-0.19
Fe	-1.33	1.66	-0.63
Co	-1.18	1.75	-0.58
Ni	-0.09	2.03	-0.03
Cu	-0.25	1.81	-0.15
Zn	-0.41	1.29	-0.28

Table S2: Calculated adsorption energy (E_{ads}, eV) , bond length (d, Å), and difference in Hirshfeld charge (CT) of central ion-magnet after NO adsorption.

Device	au
Sc	1.5×10^{18}
Ti	8.3×10^{17}
V	7.58×10^{17}
Cr	$25{\times}10^{-2}$
Mn	1×10^{-7}
Fe	$2.17{ imes}10^{+5}$
Со	$6.37 \times 10^{+5}$
Ni	32×10^{-12}
Cu	16×10^{-8}
Zn	0.76×10^{-5}

Table S3: Calculated recovery time $(\tau,\,{\rm s})$ of NO gas from $M{\rm Por}$ based devices.

Figure S1: (a) Side and (b) Top view Au electrodes used for device designing in this study.

Figure S2: The structure of Au–S–FeP–S–Au device with (a) 5 Au layer and (b) 7 Au layer in extended scattering region to screen the suitable number of Au layer should be included in extended central region to avoid lateral molecule interaction and direct electrode-electrode transmission. (c) The spin-polarized transmission spectra of devices are shown in panel (a) and (b). The transmission spectra for major and minor-spins do not change by extending the central region from 5 to 7 (sum of left and right layers) Au layer. $\stackrel{6}{6}$

Figure S3: Different NO adsorption configurations: (a) The NO gas is placed along the two pyrrole rings: A-configuration. (b) The NO gas is posited between the two pyrrole rings: B-configuration. (c) The NO gas is placed on the top of the central ion-magnet: C-configuration. In all three configurations the NO gas is bonded through the nitrogen atom.

Figure S4: Calculated spin-resolved I - V curves of the pristine Au-MPor-Au and Au-NO@MPor-Au devices. The light pink and light blue colors represent the obtained I_{\uparrow} and I_{\downarrow} for Au-MPor-Au devices. The I_{\uparrow} and I_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the I_{\downarrow} of devices before and after NO adsorption. For simplicity, each plot is labeled by the device centered molecule

Figure S5: Spin-resolved transmission functions of Au–ScPor–Au and Au–NO@ScPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S6: Spin-resolved transmission functions of Au–TiPor–Au and Au–NO@TPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S7: Spin-resolved transmission functions of Au-MnPor-Au and Au-NO@MnPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S8: Spin-resolved transmission functions of Au–FePor–Au and Au–NO@FePor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S9: Spin-resolved transmission functions of Au–CoPor–Au and Au–NO@CoPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S10: Spin-resolved transmission functions of Au-CuPor-Au and Au-NO@CuPor-Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au-MPor-Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S11: Spin-resolved transmission functions of Au–ZnPor–Au and Au–NO@ZnPor–Au at 0.0 bias voltages. The light pink and light blue colors represent the obtained T_{\uparrow} and T_{\downarrow} for Au–MPor–Au devices. The T_{\uparrow} and T_{\downarrow} of NO adsorbed devices are shown by orange and purple. The dashed curves represent the T_{\downarrow} of devices before and after NO adsorption.

Figure S12: Projected density of states (PDOS) of M 3d orbital of VPor (top) and CuPor (bottom) before and after NO adsorption.