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S1 Electronic Structure Setup

All electronic structure calculations have been carried out using Quickstep implemented in version
8.1 of the CP2k software suite [1]. The HSE06 hybrid density functional [2] with 12 % Hartree-
Fock exchange (which was found to be ideal for hematite [3]) supplemented by D3 dispersion
corrections [4] has been used. To represent the valence electrons, a mixed Gaussian/plane wave
basis set is used [5], where we used a triple-ζ quality basis set for the H atoms, double-ζ quality
basis set for the Fe, and O atoms and a kinetic energy cutoff of 600 Ry for the plane wave basis
set. Core electrons are represented by norm-conserving relativistic Goedecker-Teter-Hutter (GTH)
pseudo potentials [6, 7]. This electronic structure setup follows the one used previously [8].

S2 Validation of the Committee Neural Network Potential

To ensure that the conducted simulations based on the trained c-NNP are meaningful, its results
need to be verified. In their latest publication [11], Schran et al. introduced a scoring scheme which
can be used to quantify the agreement of the c-NNP with the underlying full ab initio reference.
Within this scoring scheme, the structure, velocities, and forces are validated in terms of the
respective radial distribution functions (RDFs), velocity density of states (VDOS) and one-to-one
comparison of the forces. Here it is important to realize that the RDFs are converged quite quickly,
such that the highest scores are expected for this property, while the forces are relatively difficult
to train, such that this is the most important criterion. To validate the NNP forces, we randomly
extract 20 configurations from a c-NNP MD simulation and computed the explicit ab initio forces
with cp2k. Importantly, the force validation is performed against configurations which have not
been included into the training set of the c-NNP. Note that we could not compare the VDOS with
the existing ab initio trajectories because for the previous publication [8] many short trajectories
have been generated which are too short to obtain a statistically meaningful VDOS.

In Fig. S1a we compare all possible RDF combinations obtained from the full AIMD simulation
data from Ref. [8] with the ones obtained from the c-NNP simulations. By inspecting the figure,
one can see that there is almost no difference between the c-NNP and the full AIMD structure.
Using the scoring scheme to quantify the agreement of the RDF [11], we obtain a score of 97.34 %
for the RDFs. In Fig. S1b the density profile as a function of distance from the nearest hematite
surface is shown. We observe that the agreement between the c-NNP and the AIMD data is
qualitatively good: The peak positions are all correctly reproduced by the c-NNP, only the height
of the density graph shows some quantitative difference. Note, however, that the available AIMD
data is not sufficient to obtain fully converged graphs and therefore the comparison is quite difficult.
This figure gives a hint already that the trained c-NNP is indeed a useful tool to fully converge
structural and dynamical properties. In Fig. S1c we present the comparison between the AIMD
and c-NNP forces of the 20 randomly selected test structures, see above. Again, we observe a fairly
good agreement between the two different ways to obtain the atomic forces, but there are some
outliers. Using the scoring scheme [11], we obtain an overall score of 84.35 % for the forces. In
total, the obtained scorings for the RDF and the forces as well as the overall force RMSE are in
good agreement to the previous published c-NNPs [11]. Therefore, our trained c-NNP are indeed
capable to reproduce the hematite/water system at the level of hybrid DFT.

S3 Simulation Boxes

In our previous work [8], we used NpT simulations with a flexible simulation cell containing 93 water
molecules. Here, we took a single snapshot from those equilibrated NpT simulations, illustrated
in Fig. S2, with the cell dimensions a = 10.241 Å, b = 10.2943 Å, c = 47.3423 Å, α = 91.966◦,
β = 87.424◦, and γ = 119.738◦. From this cell, we extended the c axis, being perpendicular to the
hematite slab, to 80 Å and inserted as many water molecules as necessary to keep the experimental
water density of 0.997 kg L−1. This cell was then taken as “unit cell” for further trivial box size
increments along the axes parallel to the hematite slab which can be achieved by multiplying the
unit cell along the a or b axes. All employed system sizes are summarized in Table 1. As long as not
reported differently, all reported results in the main text are based on the “(2x2)” box because it
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Å

−
3

Distance from nearest O layer / Å
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Figure S1: Assessment of the quality of the trained c-NNP on describing the hematite/liquid
water interface, in terms of all possible RDF combinations (a), the atom density as a function
of distance to the nearest hematite surface (b), and a direct comparison of the c-NNP with the
AIMD force (c). In (a), the red dashed and the solid black lines show the RDFs obtained from
c-NNP and AIMD simulations, respectively. In (b) the filled curves depict the hydrogen (blue) and
oxygen (purple) densities obtained from c-NNP simulations, while the solid lines show the oxygen
hydrogen (black), water hydrogen (red) and water oxygen (orange) atom densities from AIMD
simulations. The AIMD data in (a) and (b) is taken from our previous publication [8]. Note that
the distributions based on these AIMD simulations are not fully converged yet. In (c) we show a
one to one force comparison between c-NNP and explicit ab initio calculations. Here, the ab initio
forces were computed from 20 randomly selected configurations which have not been included into
the training set. Note that similar force RMSEs have been reported in previous publications, e.g.
for liquid water at a Cu slab (207.5 meV Å−1) [9], LixMn2O4 [10] (240.0 meV Å−1) or liquid water
at MoS2 slabs [11] (190.1 meV Å−1).

contains the most particles and therefore provides the best statistical quality among the employed
boxes.
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Table 1: Hematite/Water simulation box sizes employed in this work, where a, b, and c give the
respective length of the lattice vectors, Natoms is the number of atoms in the simulation box and
Nwat is the number water molecules in the simulation box. For all boxes, the same angles between
the lattice vectors have been used, namely α = 91.966◦, β = 87.424◦, and γ = 119.738◦. The
“(47 Å)” box has been taken from our previous hematite/Water simulations [8].

a/Å b/Å c/Å Natoms Nwat

“(47 Å)” 10.241 10.2943 47.3423 435 93
“(80 Å)” 10.241 10.2943 80 780 208
“(1x2)” 10.241 20.5886 80 1560 416
“(2x2)” 20.482 20.5886 80 3120 832

(a)

(b)

Figure S2: View of the (47 Å) (a) and (80 Å) (b) simulation boxes along the b axis, see Table 1.
H, O, and Fe atoms are colored in white, red and beige, respectively. For reference, the unit cell
is depicted with blue solid lines.

S4 Temperature dependence of the dynamics of HSE06-D3
bulk liquid water

For our previous simulation of the hematite/liquid Water interface [8] we opted to use an effective
simulation temperature of 330 K to correctly model liquid ambient water. This higher effective
simulation temperature has regularly been used in the context of interfaces between liquid water
and other metal oxide materials, e.g. TiO2 [12]. The HSE06 hybrid functional is derived from the
GGA functional PBE, such that it uses the very same exchange and correlation terms at its parent
functional, but mixes the PBE exchange with exact HF exchange. Therefore it is expected that the
HSE06 functional behaves qualitatively similar to its parent functional PBE. Indeed, it was shown
that the structure of liquid water (in terms of the OO and OH RDF) of the HSE06 functional
does not significantly differ from PBE [13]. Note that the original HSE06 functional adds 25 % HF
exchange, while we only use 12 % HFX. While this certainly changes the functional, it renders our
HSE06 even more similar to the parent PBE functional since it is changed less compared to the
latter. Importantly, it is well known from the literature, that the PBE functional tends to overbind
intermolecular water–water interactions [14]. Here it could be shown that an even higher effective
temperature of 400 K is required to get the structure and dynamics (in terms of the self-diffusion
coefficient) right. Note that the same overbinding effect could also be seen for the hybrid PBE0
functional [15] which is also derived from the PBE functional. This undeniably high effective
simulation temperature has successfully been employed in the literature, e.g. to simulate aqueous
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ion solutions with the PBE GGA functional [16] or with the hybrid PBE0 functional [17].
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Figure S3: Assessment of the c-NNP trained for the hematite/liquid water interface on describing
pure bulk liquid water at 330 (a) and 400 K (b) only. Here we compare the calculated c-NNP forces
with the explicit ab initio forces, where the latter have been calculated from 20 randomly drawn
configurations from the c-NNP simulation.

Using our trained c-NNP we can also run simulations on bulk liquid water since the hematite/liquid
water box contains a sufficiently large bulk water region. Using the c-NNP we can therefore set
out to assess the temperature dependence of the hybrid HSE06-D3 functional. To ensure that bulk
liquid water is indeed reproduced correctly at the level of HSE06-D3 by our c-NNP, we did a care-
ful validation. First of all, we conducted NVT simulations of bulk liquid water at 330 and 400 K
using the c-NNP and again randomly selected 20 configurations. For all these 20 configurations we
calculated the explicit ab initio forces at the HSE06-D3 level of theory using the setup described
in Sec. S1 We then compared the resulting forces as shown in Fig. S3, computed the RMSE, and
the score [11]. For bulk liquid water at 330 and 400 K we obtain a force score of 92.76 and 92.75 %
, respectively. Therefore, the overall agreement between the explicit ab initio calculation and the
c-NNP is very good, proving that we can use the latter to simulate bulk liquid water at the given
temperatures.

In Fig. S4a we show the RDF of HSE06-D3 water from a bulk liquid water simulation using the
trained c-NNP introduced above as a function of temperature. Moreover, we also plot the exper-
imental reference data as obtained by joint Neutron and X-Ray diffraction experiments [18]. We
observe that the agreement with the experimental reference becomes better with increasing tem-
peratures. This finding is in agreement with previous results using the PBE GGA functional [14].
In Fig. S4b we plot the diffusion coefficient of bulk liquid water using the trained c-NNP as a
function of system size. Using this plot, the finite-size corrected diffusion coefficient can be ex-
trapolated, see below. Here we find that the finite-size corrected diffusion coefficient at 330 K is
0.49× 10−5 cm2 s−1 which is about one order of magnitude smaller than the experimental value
determined by NMR measurements [19] of 2.61× 10−5 cm2 s−1 at 300 K. Instead, our determined
diffusion coefficient at 330 K agrees very well with simulation data of liquid water using the similar
PBE functional [14] at 349 K of 0.33× 10−5 cm2 s−1. These findings for the RDF and the diffusion
coefficient indeed underline that the hybrid HSE06-D3 functional using 12 % HFX suffers from the
same systematic overbinding of intermolecular interactions in liquid water which are well docu-
mented already [14]. At 365 and 400 K we computed finite-size corrected self diffusion coefficients
of 1.57× 10−5 and 3.41× 10−5 cm2 s−1, respectively, where the former is somewhat smaller and
the latter is somewhat larger than the experimental value. Recall that, the structural properties
in terms of the RDF agree much better with the experimental reference data compared to the
lower simulation temperatures. Therefore we opt to use 400 K as effective simulation temperature
throughout this paper because it seems to be a good compromise to get both, the structure and
dynamics of liquid water at the hematite interface at ambient conditions sufficiently right.
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Figure S4: Comparison of the structural and dynamical properties of HSE06-D3 water in terms
of their RDF (a) and self diffusion coefficients (b) as a function of temperature at 330 (green),
365 (blue), and 400 K (orange). For reference, the respective RDFs obtained from a joint analysis
of available ND and XRD measurements [18] at 300 K are also shown (black solid lines). The
underlying simulations to obtain the graphs have been obtained using the c-NNP trained for the
hematite/liquid water interface applied to bulk liquid water only. The intercept of the linear fits in
(b) yields the finite-size corrected diffusion coefficient. Note that the self diffusion coefficient was
in liquid water at 300 K was measured to be 2.61× 10−5 cm2 s−1 by NMR experiments [19] which
is illustrated as black dashed-dotted horizontal line in (b).

S5 Finite-size effects of the self-diffusion coefficient

Finite size effects for isotropic, cubic simulation boxes are quite well known and studied [20, 21].
Therein, a correction equation was derived to estimate the magnitude of the finite size effects and
to extrapolate the results to an infinitely large box. The self-diffusion coefficient of an infinitely
large simulation box

D0 = DPBC −
2.837kBT

6πηL
(S1)

can therein be calculated from the finite-size dependent value, DPBC, where kB is the Boltzmann
constant, T is the temperature, L is the length of the cubic simulation cell, and η is the viscosity.
The viscosity can be computed from the simulation via the stress tensor [22]. Alternatively, the
self-diffusion coefficient can be extrapolated from linear regression of multiple system sizes. Here,
we computed DPBC from five different system sizes, namely 128, 256, 512, 768, and 1024 water
molecules at 330, 365, and 400 K. Cubic simulation boxes and a density of 0.997 kg L−1 have been
used throughout. The results are shown in Fig. S4b. We find a finite size corrected self-diffusion
coefficient for liquid water of 0.49× 10−5, 1.57× 10−5, and 3.41× 10−5 cm2 s−1 at 330, 365, and
400 K, respectively. From the slope of the linear fits, η β = η/kBT can be estimated as a function
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of effective simulation temperature. Recall, that we are using an effective simulation temperature
of 400 K to mimic ambient liquid water using the HSE06-D3 functional, see above. At 400 K we
find η β = 1606.80 s cm−2 Å−1. This value will be used below, to estimate the finite-size correction
within the hematite/Water box.

In case of a system being confined in one dimension, finite size corrections have also been
introduced recently [23]. In such systems, the self-diffusion coefficient (as given by Einstein or
Green-Kubo relations) is only meaningfully defined in the direction parallel to the confining surface.
Moreover, the self-diffusion coefficient in that direction necessarily depends on the height of the
simulation box, H, i.e. the distance between the confining surfaces. In cases where H is larger
than the square surface area length L the authors introduced a finite size correction

∆D‖(H > L) =
1

ηβ

[
3

40

H

L2
− 3 ln(1 +

√
2)

4πL

]
, (S2)

and the self-diffusion coefficient for an infinitely large box

D
‖
0(H) = D

‖
PBC(H)−∆D‖(H > L) (S3)

can be extrapolated. Note that, the hematite/Water simulation boxes are approximately squared,
see Table 1.

Generally, one can again increase the system size systematically to obtain a fit and thereby

extrapolate D
‖
0 , as we did it for bulk water, see above. However, even with the c-NNP, this is not

easily possible because the system size of the hematite/water box cannot arbitrarily be increased,
but just by integer factors of the unit cell. Moreover, the extrapolation equation also requires
the surface area to be a square, therefore for each larger system size, the total number of atoms
increases by a factor of 4. This quickly results in simulation boxes containing more than 10,000
atoms and would result in a huge amount of data. Instead of doing this extrapolation, we now
take the determined ηβ from the bulk water simulations at the same temperature. This way also
guarantees that the temperature is correctly taken into account because ηβ was determined from
the very same effective simulation temperature. Note that it is assumed that η does not change
as a function of system size (otherwise the finite-size extrapolation equations given above would
also not work). This has also been confirmed, see e.g. [22]. The finite-size corrected self-diffusion
coefficients of water confined between the two hematite slabs are shown in Fig. 5 in the main text.

S6 Reactant and Product State Definitions for Determining
Residence Times

The calculation of residence lifetimes, as described in Eq. 1 in the main text, requires the definition
of reactant and product states. In case of a water molecule leaving the first solvation layer at the
hematite interface, the geometrical definitions of the reactant and product states are illustrated in
Fig. S5. The figure shows the logarithm of the O atom density (only of water molecules) as a func-
tion of distance from the hematite surface. The logarithm is taken, since it can then be interpreted
as an effective mean field potential (in full analogy to a radial distribution function [24]) being
helpful for the discussion. Within the stable state picture (SSP) [25], recrossings of the transition
state are not counted as “reactive” trajectories. Therefore, reactant and product states must be
chosen deeply into their respective energy minima, i.e. settled. This means that at t = 0, the water
molecule must be located deeply in the energy minimum in the first solvation layer (reactant state)
to be considered for analysis. Moreover, the trajectory of that water molecule is only counted
“reactive” if it reaches the minimum of the product state (second solvation layer). Thereby the
probability that the water molecule immediately returns back to the reactive state (“recrossing”)
is minimized.

To obtain the kinetics of the in-plane/out-of-plane dynamics of the terminal OH groups at the
hematite slab, we used the same technique as for the first layer residence time. The geometrical
definition of the product and reactant states are illustrated in Fig. S6. Note that in this case both
paths of the transition are taken into account, i.e. the transition from a parallel to a perpendicular
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arrangement and vice-versa. In the former case, the “parallel state” is the reactant and the
“perpendicular state” is the product. For the backward transition, the definition of the reactant
and product states are exactly opposite.

S7 H-bond Definition

H-bonds are defined using the joint-angle criterion

rHO < cHO
1 + cHO

2 cos Θ , (S4)

where rHO is the intermolecular O · · · H distance and Θ is the corresponding O · · · H−O angle.
Within this definition, cos Θ = −1 corresponds to a perfectly linear H-bond arrangement. The two
parameters cHO

1 and cHO
2 can be determined from joint angle-distance distribution functions (JDF).

Values of cHO
1 = 1.37 Å and cHO

2 = −1.71 Å have been shown to be useful for liquid ambient water
in general [26, 16, 27, 28]. For bulk HSE06 water, simulated by our c-NNP, the JDF is shown in
Fig. S7 including the H-bond criterion. As one can see, the employed criterion cuts through the
saddle point between perfectly linear H-bonded pairs at rOH ≈ 1.8 Å and cos Θ = −1 and non
H-bonded O · · · H configurations. Note that this H-bond definition also belongs to the so-called
r–α definitions of H-bonds [29].
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of the topmost O layer of the hematite slab is smaller than 2.73 or larger than 4.96 Å, respectively.
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