Supplementary Information

Tailoring the charge transport characteristics in ordered small-molecule organic semiconductors by side-chain engineering and fluorine substitution

Ilya E. Kuznetsov ^a, Denis V. Anokhin ^{a,b,c}, Alexey A. Piryazev ^{a,b,c}, Maxim E. Sideltsev ^a, Azaliia F. Akhkiamova ^{a,b}, Artyom V. Novikov ^d, Vladimir G. Kurbatov ^{a,e}, Dimitri A. Ivanov ^{a,b,c,f} and Alexander V. Akkuratov *^a

^a Institute for Problems of Chemical Physics of the Russian Academy of Sciences (IPCP RAS), Academician Semenov avenue 1, Chernogolovka, Moscow 142432, Russian Federation.

^b Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russian Federation.

^c Moscow State University, Moscow, Russia, 119991, Moscow, GSP-1, 1 Leninskiye Gory.

^d Skolkovo Institute of Science and Technology, Bolshoi blvd., 30, b. 1, Moscow, 121205, Russian Federation.

^e Yaroslavl State Technical University, Moscow avenue 88, Yaroslavl, 150023, Russian Federation.

^f Institut de Sciences des Matériaux de Mulhouse (CNRS UMR 7361), Université de Haute Alsace, France.

Figure S1. ¹H NMR spectrum of compound 1a

Figure S2. ¹H NMR spectrum of compound 1b

Figure S3. ¹H NMR spectrum of compound **2a**

Figure S4. ¹H NMR spectrum of compound **2b**

Figure S5. ¹H NMR spectrum of compound **3a**

Figure S6. ¹H NMR spectrum of compound **3b**

Figure S7. ¹H NMR spectrum of compound 4a

Figure S8. ¹H NMR spectrum of compound **4b**

Figure S9. ¹H NMR spectrum of compound **5a**

Figure S10. ¹H NMR spectrum of compound **5b**

Figure S11. ¹⁹F NMR spectrum of compound **5b**

Figure S12. ¹H NMR spectrum of compound **5**c

Figure S13. ¹H NMR spectrum of compound **5d**

Figure S14. ¹⁹F NMR spectrum of compound **5d**

Figure S15. ¹H NMR spectrum of compound M1

Figure S16. ¹³C NMR spectrum of compound M1

Figure S17. ¹H NMR spectrum of compound M2

Figure S18. ¹³C NMR spectrum of compound M2

Figure S19. ¹⁹F NMR spectrum of compound M2

Figure S20. ¹H NMR spectrum of compound M3

Figure S21. ¹³C NMR spectrum of compound M3

Figure S22. ¹H NMR spectrum of compound M4

Figure S23. ¹³C NMR spectrum of compound M4

Figure S24. ¹⁹F NMR spectrum of compound M4

Figure S25. FT-IR spectrum of compounds M1-M4

Figure S26. HPLC of compounds M1-M4.Conditions: eluent - acetonitrile:toluene (7:3); flow rate 1 mL/min; temperature 40°C; column - Phenomenex Luna C18, 5μ m (4.6 × 150 mm).

Figure S27. Absorption and fluorescence spectra of the compounds M1-M4 in films normalized relative to their respective dominant bans.

Figure S28. 2D GIWAXS patterns of M1 (a), M2 (b), M3 (c) and M4 (d) at 120°C

Figure S29. Full 2D GIWAXS pattern of M3

Figure S30. *J*-V curves of hole-only devices based on compounds **M1-M4** (solid points for as-cast films and empty points for annealed films at 120°C). The red lines represent the best fitting from space charge limited current model.