Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplemental Material for

Prediction of Novel Boron-carbon Based Clathrates

Zhi Cui¹, Xiaohua Zhang^{1,2}, Yuanhui Sun^{3,*}, Yong Liu¹, and Guochun Yang^{1,2,*}

¹State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

²Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China

³Department of Chemistry and Biochemistry, California State University Northridge, Northridge 91330, United States

*Corresponding Author Email: yuanhui.sun@csun.edu, <u>yanggc468@nenu.edu.cn</u>, yanggc@ysu.edu.cn

Table of Contents

Computational Details	S3
Structure parameters of the predicted SrB_2C_4 and LaB_4C_2	S5
Possible synthesis pathway of SrB_2C_4 and LaB_4C_2	S6
Stability of the predicted structures	S7
Electronic property of the predicted structures	S9
Superconductivity and Vickers hardness of the predicted structures	S12
References	S13

Computational Details

Evolutionary search by the crystal structure analysis by particle swarm optimization (CALYPSO) code,^{1, 2} was employed to find the possibly stable SrB_xC_y , and LaB_xC_y structures. We focus on the structure identification with SrB_xC_y , and LaB_xC_y (x : y = 1 : 5, 5 : 1, 2 : 4, 4 : 2, 2 : 3, 3 : 2, 2 : 5, 5 : 2) stoichiometries at 50 GPa. Unit cells containing 1 and 2 formula units are considered. Firstly, random structures are constructed with atomic coordinates generated by the crystallographic symmetry operations. Local optimizations are performed by the Vienna ab-initio simulation package (VASP)^{3, 4} using the conjugate gradient method and the electronic total energy convergence threshold is set at 10⁻⁵ eV. Then the 60% of the first generation structures with lowest Gibbs free energy are selected to construct the next generated randomly. A fingerprinting technique based on bond characterization is applied to strictly avoid identical structures. This procedure significantly enhances the diversity of the structures, which is crucial for the efficiency of the global structure search. In most cases, 800-1200 structures (20-30 generations) are generated.

Local optimizations and electronic property calculations are performed in the framework of the projected augmented wave pseudopotentials^{5, 6} as implemented in VASP. To obtain a better energy convergence, we have chosen a plane-wave cutoff energy of 800 eV and Monkhorst-Pack k meshes of $2\pi \times 0.03$ Å⁻¹. The electronic total energy convergence threshold is set at 10⁻⁶ eV. The Heyd-Scuseria-Ernzerhof hybrid functional is used to for the calculation of electronic properties. The finite-temperature smearing of the occupations is not considered here. Based on the supercell approach of the Phonopy code,⁷ the phonon dispersions of SrB_xC_y , and LaB_xC_y are calculated in $2\times2\times2$ supercell. Ab initio molecular dynamics simulations were performed at 300 K using the NVT ensemble and the temperature was controlled by using Nosé–Hoover method and last 8 *ps* with 1 *fs* step.⁸

The electron-phonon coupling calculations are carried out with the density functional perturbation (linear response) theory as implemented in the QUANTUM ESPRESSO package.⁹ We employ ultrasoft pseudopotentials with Mg.pbe-spnl-rrkjus_psl.1.0.0.UPF, B.pbe-n-rrkjus_psl.1.0.0.UPF and C.pbe-rrkjus.UPF for MgB₂C₄, Ca.pbe-mt_fhi.UPF, B.pbe-mt_fhi.UPF and C.pbe-mt fhi.UPF for CaB₂C₄ and CaB₄C₂, Sr.pbe-sp-van.UPF, B.pbe-n-rrkjus psl.1.0.0.UPF

and C.pbe-van_ak.UPF for SrB₄C₂, Sc.pbe-spn-rrkjus_psl.1.0.0.UPF, B.pbe-n-van_ak.UPF and C.pbe-rrkjus.UPF for ScB₂C₄, Ti.pbe-spn-rrkjus_psl.1.0.0.UPF, B.pbe-n-rrkjus_psl.0.1.UPF and C.pbe-rrkjus. UPF for TiB₂C₄, and La.pbe-spfn-rrkjus_psl.1.0.0.UPF, B.pbe-n-van_ak.UPF and C.pbe-van_ak.UPF for LaB₄C₂. The considered kinetic energy cutoff and Gaussians of width are 100 *Ry* and 0.05 *Ry*, respectively. To reliably calculate EPC in metallic systems, we need to sample dense k-meshes for electronic Brillouin zone integration and enough q-meshes for evaluating average contributions from the phonon modes. Dependent on specific structures of stable compounds, we use $12 \times 12 \times 12$ *k*-meshes and $4 \times 4 \times 4$ *q*-meshes for MB₂C₄ and MB₄C₂. We have calculated the superconducting *T_c* of MB₂C₄ and MB₄C₂ as estimated from the McMillan-Allen-Dynes formula:¹⁰⁻¹²

$$T_{\rm c} = \frac{\omega_{\rm log}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$
(1)

where μ^* , the Coulomb pseudopotential, was assumed to be 0.1. The electron-phonon coupling constant, λ , and the logarithmic average phonon frequency, ω_{\log} , are calculated from the Eliashberg spectral function for the electron-phonon interaction:

$$\alpha^{2}F(\omega) = \frac{1}{N(E_{F})} \sum_{kq,\nu} \left| g_{k,k+q,\nu} \right|^{2} \delta(\varepsilon_{k}) \delta(\varepsilon_{k+q}) \delta(\omega - \omega_{q,\nu}) \quad (2)$$

where $\lambda = 2 \int d\omega \frac{\alpha^2 F(\omega)}{\omega}$; $\omega_{\log} = \exp\left[\frac{2}{\lambda} \int \frac{d\omega}{\omega} \alpha^2 F(\omega) \ln(\omega)\right]$. Herein, $N(E_F)$ is the electronic density of states at the Fermi level, $\omega_{q,v}$ is the phonon frequency of mode v and wave vector q, and $|g_{k,k+q,v}|$ is the electron-phonon matrix element between two electronic states with momenta k and k + q at the Fermi level.¹³

Structure parameters of the predicted SrB_2C_4 and LaB_4C_2

Phases	Pressure	Lattice	Wyckoff Positions			
	(GPa)	Parameters	(fractional)			
		(Å, °)	Atoms	x	У	z
I4/mmm	50	<i>a</i> = 4.6188	Sr(2a)	0.50000	0.50000	0.50000
SrB ₂ C ₄		<i>b</i> = 4.6188	B (4d)	0.00000	0.50000	0.25000
		<i>c</i> = 4.5218	C (8j)	0.73953	0.50000	0.00000
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				
I4/mmm	50	<i>a</i> = 4.6629	La (2a)	0.00000	0.00000	0.00000
LaB ₄ C ₂		<i>b</i> = 4.6629	B (8j)	0.23032	0.50000	0.00000
		<i>c</i> = 4.8194	C (4d)	0.50000	0.00000	0.25000
		$\alpha = 90.0000$				
		$\beta = 90.0000$				
		$\gamma = 90.0000$				

Table S1 Structural information of the predicted SrB_2C_4 and LaB_4C_2 at 50 GPa.

Possible synthesis pathways of SrB_2C_4 and LaB_4C_2

Table S2 Formation enthalpy of SrB_2C_4 within different synthesis pathways at 50 GPa. The $P6_3/mmc$ Sr, γ -B₂₈, graphite or diamond C, *Imma* SrB, C2/m SrB₂, R-3m SrB₄, *Cmmm* SrB₆, $P6_3/mmc$ SrBC, Pm-3n SrB₃C₃, and C2/m SrC₂ are adopted for the calculation, respectively.

	Synthesis pathways	ΔH with respect to graphite	ΔH with respect to diamond
		carbon (meV)/atom	carbon (meV)/atom
SrB_2C_4	Sr+2B+4C	-567.189	-309.449
	SrB_2 +4C	-289.230	-31.559
	SrC ₂ +2B+2C	-238.444	-109.573
	SrBC+B+3C	-176.779	16.526
$2SrB_2C_4$	SrB ₄ +SrC ₂ +6C	-184.244	9.062
	SrB+SrB ₃ C ₃ +5C	-155.954	5.134
	SrB_2 + SrC_2 +2B+6C	-263.872	-70.566
	SrB+SrC ₂ +3B+6C	-313.488	-120.183
	$SrB_3C_3+SrC_2+B+3C$	-80.909	15.744
	2SrBC+2B+6C	-176.779	16.526
$3SrB_2C_4$	$SrB_6 + 2SrC_2 + 8C$	-162.636	9.191
	$2SrB_{3}C_{3}+SrC_{2}+4C$	-28.397	57.516
	2SrB ₃ C ₃ +6C+Sr	-137.979	-9.109
	SrB ₃ C ₃ +2SrBC+B+7C	-92.311	58.038

Table S3 Formation enthalpy of LaB₄C₂ within different synthesis pathways at 50 GPa. The *dfcc* La, γ -B₂₈, graphite or diamond C, *R*-3*m* LaB, *P4/mbm* LaB₄, *Pm*-3*m* LaB₆, and *Pm*-3*n* LaB₃C₃ are adopted for the calculation, respectively.

	Synthesis pathways	ΔH with respect to graphite	ΔH with respect to diamond
		carbon (meV)/atom	carbon (meV)/atom
LaB ₄ C ₂	La+4B+2C	-513.540	-384.669
	LaB_4+2C	-112.054	16.816
$2LaB_4C_2$	LaB+LaB ₄ +3B+4C	-252.655	-123.785
	LaB+LaB ₆ +B+4C	-204.512	-75.642
	LaB ₃ C ₃ +LaB ₄ +B+C	-24.780	7.437
$3LaB_4C_2$	2LaB ₃ C ₃ +LaB ₆	36.407	36.407
	2LaB ₆ +La+6C	-181.692	-52.821
	$LaB_{3}C_{3} + 2LaB_{4} + B + 3C$	-53.872	10.563

Stability of the predicted structures

High symmetry points	Coordinates
Z	0.000 0.000 0.500
А	0.500 0.500 0.500
Μ	0.500 0.500 0.000
G	0.000 0.000 0.000
Z	0.000 0.000 0.500
R	0.000 0.500 0.500
Х	0.000 0.500 0.500
G	0.000 0.000 0.000

Table S4 The *k*-space coordinates of selected high symmetry points in the first Brillouin zone for the calculation of band structures and phonon dispersions.

Fig. S1 Phonon dispersion curves of the predicted SrB_2C_4 and LaB_4C_2 at 50 GPa, which are demonstrated as dynamically stable compounds by the absence of imaginary frequency mode.

Fig. S2 Phonon dispersion curves (upper) of B-C clathrates at 0 GPa and the corresponding fluctuation of the total potential energy (lower) at 300 K.

Electronic property of the predicted structures

Fig. S3 Electronic band structures of XB_2C_4 and XB_4C_2 compounds by using HSE06 level of theory.

Fig. S4 Evolution of band gap as a function of θ_{BCB} of XB_2C_4 (X = Mg, Ca, Sr, Ba).

Fig. S5 Electronic band structures of $[Ba_0B_2C_4]^{2-}$ with the same θ_{BCB} of $[Mg_0B_2C_4]^{2-}$.

Fig. S6 The separated Fermi surfaces of the three bands cross the Fermi level in the band structure of MgB_2C_4 at ambient pressure.

Fig. S7 The separated Fermi surfaces of the four bands cross the Fermi level in the band structure of SrB_4C_2 at ambient pressure.

Superconductivity and Vickers hardness of the predicted structures

phases	Pressure	$T_{\rm c}({\rm K})$	$N(E_f)$	λ	$\omega_{\log}(K)$
	(GPa)	$\mu^*=0.1$	(states/Ry)		
MgB_2C_4	0	4.6	5.59	0.43	712.39
CaB_2C_4	0	1.7	5.95	0.36	731.03
ScB_2C_4	0	9.6	10.33	0.68	299.67
TiB_2C_4	0	5.4	13.23	0.53	365.75
CaB_4C_2	0	15.0	8.06	0.62	604.84
SrB_4C_2	0	19.6	8.20	0.79	431.61
LaB_4C_2	0	5.0	9.44	0.46	603.51

Table S5 Superconducting properties of the metallic M-B-C phases.

Table S6 Calculated elastic constant C_{ij} (GPa), bulk modulus *B* (GPa), shear modulus *G* (GPa) and Vickers hardness H_{ν} (GPa) of M-B-C phases.

	C_{11}	<i>C</i> ₃₃	C_{44}	C_{66}	C_{12}	C_{13}	В	G	G/B	H_{v}
MgB_2C_4	652	355	175	230	32	160	258.4	193.7	0.75	28.1
CaB_2C_4	630	468	229	203	29	132	257.0	224.5	0.87	37.5
SrB_2C_4	616	504	229	219	38	96	243.4	234.4	0.96	43.6
BaB_2C_4	578	532	188	233	67	64	230.8	219.5	0.95	41.2
ScB_2C_4	637	478	95	84	56	162	278.8	132.1	0.47	11.5
TiB_2C_4	642	522	121	145	83	165	292.2	162.1	0.56	16.7
CaB_4C_2	359	670	175	159	153	39	203.1	170.2	0.84	29.8
SrB_4C_2	350	638	183	54	105	40	186.2	141.8	0.76	23.1
LaB_4C_2	422	622	204	220	143	58	219.4	201.9	0.92	37.5

References

- 1. Y. Wang, J. Lv, L. Zhu and Y. Ma, Phys. Rev. B, 2010, 82, 094116.
- 2. Y. Wang, J. Lv, L. Zhu and Y. Ma, Comput. Phys. Commun., 2012, 183, 2063-2070.
- 3. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 4. G. G. Kresse and J. J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 5. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 6. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 7. A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106.
- 8. G. J. Martyna, M. L. Klein and M. Tuckerman, J. Chem. Phys., 1992, 97, 2635-2643.
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, *J. Phys.: Condens. Matter*, 2009, 21, 395502.
- 10. L. N. Oliveira, E. K. U. Gross and W. Kohn, Phys. Rev. Lett., 1988, 60, 2430-2433.
- 11. M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda and E. K. U. Gross, *Phys. Rev. B*, 2005, **72**, 024545.
- 12. P. B. Allen and R. C. Dynes, Phys. Rev. B, 1975, 12, 905-922.
- 13. J. P. Carbotte, Rev. Mod. Phys., 1990, 62, 1027-1157.