Supporting Information

Infrared Spectroscopy of $Be(CO_2)_4^+$ in the Gas Phase: Electron Transfer and C–C Coupling of CO_2

Yang Yang, Yangyu Zhou, Xiaoyang Jin, Guanjun Wang, Mingfei Zhou*

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,

Fudan University, Shanghai 200438, China. Email: mfzhou@fudan.edu.cn

Fig. S1 Calculated geometries and relative energies (kcal mol⁻¹) of the $Be(CO_2)_4^+$ isomers in the doublet spin state at the B3LYP-D3/aug-cc-pVTZ level of theory.

Fig. S2 Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of Be(CO₂)₅⁺ cation. The simulated spectra were obtained from scaled harmonic frequencies and intensities for the two lowest-lying structural isomers (**2A** and **2B**) calculated at the B3LYP-D3/aug-cc-pVTZ level.

Fig. S3 Calculated geometries and relative energies (kcal mol⁻¹) of different isomers of $Be(CO_2)_n^+$ (n = 1-3) in the doublet spin state at the B3LYP-D3/aug-cc-pVTZ level of theory.

Fig. S4 Plot of deformation densities $\Delta \rho$ of the pairwise orbital interactions and the associated fragment orbitals at the BP86/TZ2P//B3LYP-D3/aug-cc-pVTZ level. Isosurface values are 0.002 a.u. The eigenvalues give the size of the charge migration in e. The direction of the charge flow of the deformation densities is red- \Rightarrow blue.

lsomer 1A	lsomer 1B	lsomer 1C	lsomer 1D	lsomer 1E	lsomer 1F
10.5 (0)	19.9 (2.5)	16.5 (0.3)	13.2 (3.2)	5.4 (0.2)	21.9 (0.1)
16.6 (0.4)	30.1 (0)	21.4 (0.4)	35.8 (0.2)	22.5 (0.4)	30.7 (0.1)
37.0 (2.6)	35.4 (0.5)	33.2 (0.3)	44.2 (1.8)	34.9 (0)	34.9 (0.1)
37.5 (0.1)	46.8 (1.3)	34.7 (0.5)	50.0 (0.3)	44.1 (0.3)	45.3 (0.4)
80.0 (0)	52.5 (1.0)	49.0 (0.6)	58.9 (0.8)	55.3 (0.4)	58.0 (2.9)
88.6 (0.6)	63.5 (0.3)	55.2 (3.0)	94.8 (5.9)	64.3 (0.5)	63.6 (0.6)
167.7 (0)	125.4 (15.1)	86.4 (0.7)	111.1 (1.6)	68.0 (0)	75.3 (1.0)
172.5 (0.1)	166.8 (3.2)	89.7 (0.9)	120.8 (2.5)	71.2 (3.4)	84.3 (7.4)
179.6 (0.4)	169.0 (0.1)	101.2 (4.9)	154.9 (6.9)	92.3 (0)	100.1 (12.6)
208.8 (2.4)	194.9 (5.8)	165.9 (0.4)	191.4 (1.0)	98.6 (0.5)	119.5 (3.1)
263.0 (0.8)	210.5 (1.1)	180.9 (2.9)	228.4 (7.0)	106.7 (0.5)	133.7 (1.0)
275.1 (0.1)	217.9 (0.8)	194.0 (5.6)	240.7 (7.2)	173.7 (0.7)	173.7 (0.3)
353.4 (1.6)	254.6 (4.3)	265.5 (7.0)	318.5 (5.2)	191.2 (1.1)	226.6 (11.3)
419.0 (0.5)	289.7 (1.3)	334.1 (0.4)	335.7 (5.4)	218.2 (0.9)	234.9 (20.5)
446.7 (4.8)	378.2 (5.8)	398.3 (0.2)	356.2 (6.0)	445.5 (25.3)	321.5 (3.3)
523.2 (79.5)	539.3 (105.1)	473.1 (21.7)	474.9 (54.9)	490.4 (125.9)	337.5 (13.5)
582.1 (450.3)	559.1 (377.4)	623.5 (53.8)	548.9 (128.7)	499.8 (250.4)	391.2 (8.7)
630.9 (6.1)	629.7 (18.5)	630.3 (29.0)	580.1 (148.2)	583.7 (28.2)	540.3 (192.8)
632.1 (60.2)	636.9 (43.6)	636.6 (100.7)	635.4 (3.1)	584.9 (27.0)	547.1 (368.2)
642.2 (4.6)	637.9 (49.7)	648.2 (27.9)	639.7 (72.5)	590.9 (24.8)	636.5 (13.6)
645.8 (0.3)	644.2 (245.3)	665.7 (28.9)	646.8 (184.2)	615.3 (0)	640.0 (69.7)
650.8 (22.9)	660.1 (36.1)	669.8 (6.7)	654.5 (25.8)	618.6 (91.2)	661.1 (21.8)
689.5 (172.8)	663.8 (149.2)	690.6 (374.1)	683.1 (167.3)	622.6 (52.3)	662.2 (71.9)
841.2 (336.1)	744.9 (78.2)	845.5 (423.0)	792.1 (40.7)	666.9 (28.3)	664.3 (58.5)
928.4 (299.8)	964.3 (211.7)	880.1 (1.1)	932.8 (52.8)	672.6 (27.6)	670.1 (37.7)
1145.9 (122.1)	1230.1 (305.7)	1370.9 (16.0)	1111.2 (284.9)	1367.7 (16.2)	1079.6 (153.4)
1261.9 (320.2)	1356.7 (127.2)	1386.7 (171.6)	1295.1 (26.5)	1371.7 (39.4)	1366.8 (23.2)
1388.9 (152.3)	1374.5 (122.0)	1390.1 (59.4)	1359.3 (100.6)	1372.1 (74.2)	1368.1 (109.0)
1400.8 (30.5)	1387.0 (15.1)	1405.4 (1.8)	1375.2 (71.5)	1385.3 (4.3)	1379.5 (46.8)
2008.4 (44.7)	1784.2 (412.3)	1516.8 (454.2)	1530.3 (447.9)	2406.1 (1176.0)	2319.5 (75.2)
2063.8 (797.8)	2424.5 (1114.9)	2410.1 (875.8)	2331.9 (49.0)	2428.9 (1188.7)	2404.2 (871.4)
2450.4 (1638.5)	2438.7 (1236.8)	2451.2 (1470.1)	2435.0 (1263.5)	2434.7 (1739.1)	2434.0 (1280.5)
2469.3 (166.8)	2464.4 (114.7)	2469.5 (180.9)	2454.3 (312.8)	2464.1 (45.6)	2453.9 (368.2)

Table S1 Calculated vibrational frequencies and intensities (km mol⁻¹) of the six lowestlying $Be(CO_2)_4^+$ isomers at the B3LYP-D3/aug-cc-pVTZ level.

	Mulliken	Hirshfeld	VDD	NPA	AIM
lsomer 1A					
Ве	1.30	0.30	0.22	1.10	1.74
C_2O_4	-0.36	0.01	0.05	-0.47	-0.84
CO ₂	0.06	0.70	0.73	0.37	0.08
lsomer 1B					
Ве	1.35	0.30	0.23	1.11	1.74
bent CO ₂	-0.37	0.02	0.06	-0.64	-0.83
CO ₂	0.02	0.68	0.72	0.53	0.10

Table S2 Charge analysis of $Be(CO_2)_4^+$ with Mulliken, Hirshfeld, and VDD along with NPA and AIM charge analysis at the B3LYP/aug-cc-pVTZ level.

Table S3 Coordinates (in Å) and total energies (in Hartree) of the calculated species at the B3LYP-D3/aug-cc-pVTZ level.

Be(CO ₂) ₄ +,	lsomer 1A , E = –769.18	89579	
Ве	0.0000000	0.00000000	0.37790300
0	0.00000000	1.30167200	1.45762500
0	0.00000000	-1.30167200	1.45762500
С	0.28322300	2.42394900	1.68775600
0	0.54200200	3.50335500	1.93780700
С	-0.28322300	-2.42394900	1.68775600
0	-0.54200200	-3.50335500	1.93780700
С	-1.03755400	-0.01047500	-1.79832400
0	-1.54119600	-0.01399400	-2.84765200
С	1.03755400	0.01047500	-1.79832400
0	1.54119600	0.01399400	-2.84765200
0	-1.26418000	-0.01629000	-0.55932900
0	1.26418000	0.01629000	-0.55932900
$Be(CO_{2})_{4}^{+},$	lsomer 1B , E = −769.18	312763	
С	-0.61711900	-2.42337400	0.00000000
С	1.20064500	1.16685100	2.30843500
С	1.20064500	1.16685100	-2.30843500
0	0.18142000	-1.53873000	0.00000000
0	-1.24311900	-3.37101800	0.0000000
0	1.23614400	0.50957100	1.32590100
0	1.20064500	1.78767200	3.26157700

0	1.23614400	0.50957100	-1.32590100
0	1.20064500	1.78767200	-3.26157700
С	-2.23615300	0.33883200	0.00000000
0	-2.54028200	-0.81640300	0.00000000
0	-1.05326200	0.88843400	0.00000000
Ве	0.24130300	0.11272100	0.00000000

$Be(CO_2)_5^+$,	Isomer 2A , E = –957.86	6950	
Ве	-1.03661000	0.31979000	0.00000000
0	-0.44535000	1.89746300	0.00001200
0	-2.70260300	0.62251900	-0.00000100
С	0.50329200	2.59866100	-0.00000100
0	1.38374400	3.31961800	-0.00001300
С	-3.80148800	0.19405900	0.00000500
0	-4.87308100	-0.18961600	0.00001100
С	0.11540800	-1.51931500	-1.03184300
0	0.71831600	-2.38176300	-1.53267300
С	0.11540300	-1.51932800	1.03182600
0	0.71830800	-2.38178300	1.53264700
0	-0.58626500	-0.50231600	-1.26524300
0	-0.58627300	-0.50233300	1.26523400
С	3.35028800	0.05021700	0.00001300
0	2.21398400	0.33387900	0.00000900
0	4.46534800	-0.22878300	0.00001700
$Be(CO_2)_5^+$,	Isomer 2B , E = -957.85	8800	
С	0.56231000	-1.70611500	-1.28674000
С	0.19380800	2.51806900	-0.38153500
С	-3.69687600	-0.10686400	0.06054500
0	-0.35324500	-0.95089500	-1.22297300
0	1.40801200	-2.43690600	-1.49232200
0	-0.56443700	1.65761900	-0.66715000
0	0.89624900	3.37812800	-0.13439000
0	-2.67405000	0.08964000	-0.49910700
0	-4.69969300	-0.29008800	0.56569500
С	0.05996000	-0.99960400	1.83315700
0	0.79129100	-1.76189100	1.27261200
0	-0.77029000	-0.12625800	1.34130100

-1.00951100

3.14503400

4.11475900

2.15798400

0.11098000

0.21809500

-0.06875900

0.51123400

-0.13105000

0.27111300

0.81694500

-0.28749200

Ве

С

0

0