Electronic Supplementary Information

$Ba_3(BO_3)_2$: the first example of the dynamic disorder in borate crystal

Nursultan E. Sagatov ^{*a,b}, Pavel N. Gavryushkin^{a,b}, Tatyana B. Bekker^{a,b,c}, and Konstantin D. Litasov^{d,e}

 ^aSobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation.
^bNovosibirsk State University,630090 Novosibirsk, Russian Federation.
^cNovosibirsk State University of Architecture, Design and Arts (NSUADA), 630099 Novosibirsk, Russian Federation.
^dVereshchagin Institute for High Pressure Physics RAS, 108840, Troitsk, Moscow, Russian Federation
^eFersman Mineralogical Museum, Russian Academy of Sciences, 119071 Moscow,

Russian Federation.

Computational details

The total energies and forces were calculated by solving the Schrödinger equation based on projector augmented plane-wave implementation of density functional theory within the Vienna Ab initio Simulation Package (VASP) [Kresse and Furthmüller(1996), Kresse and Furthmüller(1996)]. Exchange-correlation effects were treated in the generalized gradient approximation (GGA) with the Perdew–Wang scheme

^{*}Electronic address: sagatovnye@igm.nsc.ru; Corresponding author

[Perdew and Wang(1992)]. Ultrasoft pseudopotentials with s^1 (Ba), s^2p^1 (B), and s^2p^4 (O) electronic configurations have been used.

We performed finite temperature ab initio molecular dynamics (MD) simulations to investigate the evolution of the $Ba_3B_2O_6$ structure with temperature increase at ambient pressure. All MD simulations were performed in the isothermal-isobaric *NPT* ensemble (*N* – the number of particles, *P* – pressure, and *T* – temperature) using a Langevin thermostat. The integration of the classical Newton's equations of motion uses the Verlet algorithm, and the ground-state search is evaluated within an efficient iterative matrix diagonalization scheme and a Pulay mixer for each step. The time step for the integration was set to 1 fs. Simulations were performed in the temperature range of 300–1700 K for 20–30 ps. The integration of the Brillouin zone was performed using the Γ -point only. The plane-wave cutoff energy was set to 400 eV. The temperature of the simulation and crystallographic properties were derived from time averages taken over at least 15 ps excluding the first 2 ps of the simulation. The structure of $Ba_3B_2O_6$ was approximated by the supercell containing 352 atoms, which are $1 \times 2 \times 1$ supercell of the unit cell considered below.

Figure S1: The dependence of libration angle ψ on time for (a) AC-1, (b) AC-2, (c) C-1, and (d) C-2 at 314, 527, 728, 1041, 1339, 1551, and 1748 K.

Figure S2: The dependence of rotational angle θ on time for (a) AC-1, (b) AC-2, (c) C-1, and (d) C-2 at 314, 527, 728, 1041, 1339, 1551, and 1748 K.

Figure S3: The dependence of (a) libration ψ and (b) rotational angle θ on time for BO₃ triangle located out of ab-plane at 314, 1551, and 1748 K.

Figure S4: The dependence of (a) libration ψ and (b) rotational angle θ on time for BO₃ triangle located parallel to ab-plane at 314 and 1748 K.

Figure S5: The behavior of BO_3 groups with temperature increase.

Figure S6: Observed $\mathrm{BO}_3\mathrm{-BO}_4$ dynamical conversion

Figure S7: Comparison of static disordering of BO_3 groups in $Ba_3(BO_3)_2$ and $Ba_3Sr_3B_4O_{12}$.

References

[Kresse and Furthmüller(1996)] G. Kresse and J. Furthmüller, Physical Review B, 1996, 54, 11169–11186.

[Kresse and Furthmüller(1996)] G. Kresse and J. Furthmüller, Computational Materials Science, 1996, 6, 15–50.

[Perdew and Wang(1992)] J. P. Perdew and Y. Wang, Physical Review B, 1992, 45, 13244.