Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information

Theoretical Study of The Role of The Non-innocent Phenolate Ligand of a Nickel Complex in Water Oxidation

Ting Fan^{*},^a and Yongfei Ji^{*b}

^aSchool of Chemistry and Chemical Engineering, South China University of

Technology, Guangzhou 510641, P. R. China

^bSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou

510006, P. R. China

Author Email Address: tingfan@scut.edu.cn, yongfeiji2018@gzhu.edu.cn

Table S1. The comparison of redox potentials calculated at different functionals. The potentials here were versus NHE at pH = 7.

	$L_1 Ni^{II} - 2H_2 O \rightarrow$	$(L_1 \bullet) Ni^{II} - 2H_2 O \rightarrow$	Experiment	
	$(L_1 \bullet)Ni^{II}-2H_2O$	(L ₁ •)(H ₂ O)Ni ^m -OH	E _{p,a}	E _{cat}
B3lyp	1.04	2.11		
M06	1.11	2.07	0.00	1 4 2
M06-d3	1.14	2.07	0.99	1.42
M06L	1.00	1.56		

Fig. S1. Calculated electrochemical properties of L_1Ni^{II} -2H₂O with oxidation of ligand at pH = 7. The potentials here were versus NHE. The blue path represents the energetically favorable one during oxidation.

Fig. S2. Selected bond length (Å) and Mulliken spin density of 7³, 8³, 9³, 15², 16², and

17². The bond lengths are in black. The Mulliken spin density is in red.

Fig. S3. Free energy diagram (kcal/mol) for O-O bond formation from $(L_1 \cdot)(H_2 O)Ni^{IV}=O_a$ with six explicit water molecules via normal water nucleophilic pathway. The exponent in the label represents the spin state of the species. The barriers agree well with those in Fig 4(b)

Fig. S4. Free energy diagram (kcal/mol) for O-O bond formation from (L•)Ni^{IV}-2OH via OH-involved water nucleophilic pathway. The exponent in the label represents the spin state of the species.

Fig. S5. Free energy diagram (kcal/mol) for O-O bond formation from $(L_1 \bullet)Ni^{IV}$ -2OH via HO-OH coupling pathway. The exponent in the label represents the spin state of the species.

	Ni	L ₁	OH _e /H ₂ O _e	OH _a /H ₂ O _a	H ₂ O/OH	НООН	total
32	0.02	1.00	-0.01	-0.01	0.00		1
212	0.78	-0.73	-0.09	0.67	0.37		1
214	0.83	1.22	-0.10	0.68	0.37		3
TS ² 21-22	0.75	-0.72	0.01	0.35	0.61		1
TS ⁴ 21-22	0.81	1.22	0.02	0.38	0.57		3
222	0.82	-0.81	0.06	0.15	0.79		1
224	0.81	1.20	0.05	0.15	0.79		3
TS ² 22-23	1.10	-0.79	0.06	0.05	0.57		1
TS ⁴ 22-23	1.10	1.22	0.05	0.06	0.57		3
232	1.52	-0.58	0.04			0.03	1
234	1.58	1.35	0.04			0.03	3

Table S2. The calculated spin populations for species in Fig. 8.

24 ²	0.82	-0.80	0.74	-0.09	0.33		1
244	0.83	1.20	0.74	-0.10	0.33		3
TS ² 24-25	0.83	1.24	-0.45	0.01	-0.63		1
TS ⁴ 24-25	0.80	1.22	0.32	0.02	0.64		3
25 ²	0.87	1.18	-0.30	0.07	-0.83		1
254	0.84	1.17	0.11	0.05	0.83		3
TS ² 25-26	0.99	-0.72	0.08	0.04	0.61		1
TS ⁴ 25-26	1.05	1.20	0.08	0.05	0.62		3
26 ²	1.49	-0.53		0.04		0.03	
264	1.58	1.38		0.04		0.03	

Table S3. The calculated energies at M06L level, solvation energies and the singlepoint energies at higher basis set. The most stable species were labelled in yellow.

species	Gas phase E	Gas phase G	Solvation E	E 6-311++G**
	a.u.	a.u.	a.u.	a.u.
$L_1 Ni^{II} - 2H_2 OM3$	-1449.251383	-1448.866345	-1449.314344	-1449.557936
$(L_1 \bullet) Ni^{II} - 2H_2 OM2$	-1448.918414	-1448.537357	-1449.120639	-1449.220712
$(L_1 \bullet)$ Ni ^{II} -2H ₂ OM4	-1448.913785	-1448.535701	-1449.114859	-1449.216311
$L_1(H_2O)Ni^{II}-OH_cM3$	-1448.799479	-1448.43102	-1448.823744	-1449.115957
$L_1(H_2O)Ni^{II}-OH_eM5$	-1448.699406	-1448.334583	-1448.71582	-1449.013379
L ₁ (H ₂ O)Ni ^{II} -OH _a M3	-1448.801539	-1448.431902	-1448.823849	-1449.116567
L ₁ (H ₂ O)Ni ^{II} -OH _a M5	-1448.69836	-1448.333992	-1448.714776	-1449.012889
$(L_1 \bullet)(H_2 O)Ni^{II}-OH_eM2$	-1448.592451	-1448.218261	-1448.655661	-1448.898941
$(L_1 \bullet)(H_2 O)Ni^{II}-OH_eM4$	-1448.578095	-1448.209026	-1448.639436	-1448.885034
$(L_1 \bullet)(H_2 O)Ni^{II}-OH_aM2$	-1448.591982	-1448.218839	-1448.654786	-1448.897153
$(L_1 \bullet)(H_2 O)Ni^{II}-OH_aM4$	-1448.590431	-1448.219181	-1448.652456	-1448.896359
$(L_1 \bullet)$ Ni ^{III} -2H ₂ OM1	-1448.417936	-1448.033084	-1448.871924	-1448.713676
(L₁•)Ni ^{III} -2H₂OM3	-1448.436227	-1448.054585	-1448.883781	-1448.733386
$(L_1 \bullet) Ni^{III} - 2H_2 OM5$	-1448.40935	-1448.032275	-1448.794384	-1448.640442

$(L_1 \bullet)(H_2 O)Ni^{III}-OH_eM3$	-1448.240716	-1447.872192	-1448.445689	-1448.542526
$(L_1 \bullet)(H_2 O)Ni^{III}-OH_eM5$	-1448.2369	-1447.867154	-1448.438982	-1448.536728
(L ₁ •)(H ₂ O)Ni ^{III} -OH _a M3	-1448.24407	-1447.872413	-1448.451177	-1448.545944
$(L_1 \bullet)(H_2 O)Ni^{III}-OH_aM5$	-1448.235237	-1447.866428	-1448.436421	-1448.535829
$(L_1 \bullet)(H_2 O)Ni^{III}=O_aM3$	-1447.906602	-1447.547839	-1447.969729	-1448.211412
$(L_1 \bullet)(H_2 O)Ni^{III}=O_aM5$	-1447.913097	-1447.555532	-1447.9755	-1448.220621
$(L_1 \bullet)(H_2 O)Ni^{III}=O_eM1$	-1447.890462	-1447.528488	-1447.957428	-1448.195591
$(L_1 \bullet)(H_2 O)Ni^{III}=O_eM3$	-1447.911304	-1447.550754	-1447.976522	-1448.215564
$(L_1 \bullet)(H_2 O)Ni^{III}=O_eM5$	-1447.906528	-1447.54964	-1447.969962	-1448.21097
(L₁•)Ni ^{III} -2OHM3	-1447.928163	-1447.567438	-1447.997488	-1448.23267
(L ₁ •)Ni ^{III} -2OHM5	-1447.911231	-1447.554087	-1447.973648	-1448.216189
$(L_1 \bullet)(H_2 O)Ni^{IV} = O_eM2$	-1447.559026	-1447.196549	-1447.769367	-1447.855454
$(L_1 \bullet)(H_2 O)Ni^{IV}=O_eM4$	-1447.561309	-1447.20333	-1447.767961	-1447.858931
$(L_1 \bullet)(H_2 O)Ni^{IV}=O_aM2$	-1447.568762	-1447.210382	-1447.772435	-1447.867662
$(L_1 \bullet)(H_2 O)Ni^{IV}=O_aM4$	-1447.569271	-1447.210427	-1447.773043	-1447.867631
(L ₁ •)Ni ^{IV} -2OHM2	-1447.576008	-1447.215333	-1447.779896	-1447.877718
$(L_1 \bullet)Ni^{IV}$ -20HM4	-1447.556421	-1447.201269	-1447.758857	-1447.855945
$(L_1 \bullet)(H_2 O)Ni^{IV}-OH_eM2$	-1447.760351	-1447.387813	-1448.212919	-1448.055408
$(L_1 \bullet)(H_2 O)Ni^{IV}-OH_eM4$	-1447.741276	-1447.374805	-1448.193146	-1448.036656
(L ₁ •)(H ₂ O)Ni ^{IV} -OH _a M2	-1447.76139	-1447.389725	-1448.213474	-1448.057438
$(L_1 \bullet)(H_2 O)Ni^{IV}-OH_aM4$	-1447.744628	-1447.377013	-1448.19187	-1448.039179
(L ₁ -H)Ni ¹ -2H ₂ OM2	-1448.609747	-1448.23847	-1448.669744	-1448.916487
(L ₁ -H)Ni ¹ -2H ₂ OM4	-1448.594486	-1448.225205	-1448.658486	-1448.90129
$(L_1-deH)Ni^{II}-2H_2OM3$	-1448.749564	-1448.381597	-1448.769972	-1449.063994
(L ₁ -H)Ni ^{II} -2H ₂ OM3	-1448.308401	-1447.936959	-1448.514664	-1448.61008
(L ₁ -OH)Ni ^{III} -H ₂ OM3	-1448.01486	-1447.652521	-1448.075592	-1448.319614
13	-1753.980913	-1753.522068	-1754.175159	-1754.387735
TS ³ 1-2	-1753.941069	-1753.478272	-1754.144978	-1754.342269

2 ³	-1753.95161	-1753.484945	-1754.159015	-1754.351771
4 ²	-1447.552739	-1447.19652	-1447.758099	-1447.852988
4 ⁴	-1447.55386	-1447.198691	-1447.759116	-1447.854128
TS ² 4-5	-1447.546297	-1447.188758	-1447.752642	-1447.844352
TS ⁴ 4-5	-1447.54441	-1447.188539	-1447.74993	-1447.842582
5 ²	-1447.551898	-1447.192983	-1447.762097	-1447.849541
54	-1447.549847	-1447.192177	-1447.758755	-1447.847889
7 ³	-1448.235439	-1447.866024	-1448.436764	-1448.535479
75	-1448.2356	-1447.867599	-1448.436729	-1448.535939
TS ³ 7-8	-1448.188226	-1447.819427	-1448.398174	-1448.487434
8 ³	-1448.190378	-1447.816433	-1448.400561	-1448.490345
8 ⁵	-1448.173176	-1447.80454	-1448.381226	-1448.474558
TS ³ 8-9	-1448.187085	-1447.81427	-1448.399099	-1448.486952
9 ³	-1448.214547	-1447.841079	-1448.430373	-1448.513771
10 ³	-1371.783934	-1371.438678	-1371.995418	-1372.058105
TS ³ 10-11	-1371.746164	-1371.397257	-1371.961856	-1372.019561
11 ³	-1371.766276	-1371.415966	-1371.986432	-1372.04023
12 ²	-1371.108876	-1370.772091	-1371.323049	-1371.381625
124	-1371.095199	-1370.761808	-1371.306501	-1371.368385
TS ² 12-13	-1371.074531	-1370.73508	-1371.291299	-1371.347071
13 ²	-1371.092837	-1370.751625	-1371.314782	-1371.364869
134	-1371.081784	-1370.745777	-1371.300131	-1371.354721
15 ²	-1447.570066	-1447.209206	-1447.774904	-1447.86803
154	-1447.562232	-1447.20575	-1447.765257	-1447.860704
TS ² 15-16	-1447.550031	-1447.189106	-1447.7565	-1447.847028
16 ²	-1447.555579	-1447.19319	-1447.765108	-1447.852861
TS ² 16-17	-1447.554329	-1447.194566	-1447.765087	-1447.850814
172	-1447.577364	-1447.213404	-1447.791157	-1447.875254
TS ⁴ 15-17	-1447.518827	-1447.160867	-1447.727907	-1447.816227
174	-1447.578166	-1447.216096	-1447.792037	-1447.876142
192	-1371.114497	-1370.779267	-1371.328768	-1371.386725
194	-1371.115606	-1370.781096	-1371.327896	-1371.388055
TS ² 19-20	-1371.103826	-1370.766483	-1371.317515	-1371.375008
TS ⁴ 19-20	-1371.078909	-1370.742813	-1371.29316	-1371.350789
20 ²	-1371.132473	-1370.792027	-1371.351418	-1371.404649
204	-1371.131053	-1370.793515	-1371.348302	-1371.403033
21 ²	-1371.11599	-1370.777789	-1371.330003	-1371.387706

214	-1371.114909	-1370.778724	-1371.327857	-1371.386933
TS ² ₂₁₋₂₂	-1371.110714	-1370.77632	-1371.324847	-1371.381666
TS ⁴ ₂₁₋₂₂	-1371.110913	-1370.777864	-1371.322567	-1371.381712
22 ²	-1371.114765	-1370.778214	-1371.325041	-1371.387352
224	-1371.115502	-1370.779628	-1371.325852	-1371.388013
TS ² 22-23	-1371.109046	-1370.773555	-1371.321003	-1371.38177
TS ⁴ 22-23	-1371.109841	-1370.774724	-1371.321744	-1371.382512
23 ²	-1371.140901	-1370.80313	-1371.353448	-1371.413056
234	-1371.139231	-1370.802734	-1371.351173	-1371.411615
24 ²	-1371.11246	-1370.776241	-1371.323838	-1371.384976
244	-1371.113076	-1370.777561	-1371.324369	-1371.385703
TS ² 24-25	-1371.109107	-1370.775479	-1371.323096	-1371.381556
TS ⁴ ₂₄₋₂₅	-1371.10892	-1370.775969	-1371.323023	-1371.381395
25 ²	-1371.112964	-1370.776057	-1371.326268	-1371.387412
254	-1371.11247	-1370.776239	-1371.325806	-1371.386861
TS ² 25-26	-1371.111347	-1370.773793	-1371.326281	-1371.384116
TS ⁴ 25-26	-1371.110046	-1370.773921	-1371.324488	-1371.383195
26 ²	-1371.144832	-1370.807117	-1371.355842	-1371.416549
264	-1371.143009	-1370.806661	-1371.353658	-1371.414999
27 ²	-1753.308953	-1752.860758	-1753.502394	-1753.713506
282	-1753.324307	-1752.871112	-1753.522302	-1753.723294
274	-1753.308936	-1752.861317	-1753.501895	-1753.713565
284	-1753.321973	-1752.869324	-1753.518825	-1753.721076
TS ⁴ ₂₇₋₂₈	-1753.302407	-1752.852439	-1753.494814	-1753.70409
TS ² ₂₇₋₂₈	-1753.303944	-1752.852784	-1753.496471	-1753.705753
292	-1294.702508	-1294.385798	-1294.915762	-1294.950667
294	-1294.674246	-1294.362074	-1294.890736	-1294.922804
30 ²	-1294.675863	-1294.361963	-1294.894683	-1294.92402
304	-1294.673313	-1294.361576	-1294.89088	-1294.922148
TS ² 30-31	-1294.65766	-1294.34468	-1294.874972	-1294.904639
TS ⁴ ₃₀₋₃₁	-1294.65545	-1294.344655	-1294.871937	-1294.902805
312	-1294.687176	-1294.373277	-1294.903203	-1294.933825
314	-1294.68574	-1294.373347	-1294.901149	-1294.93239
	-1796.489994	-1795.975869	-1796.677506	-1796.948353
324	-1796.488644	-1795.976346	-1796.675038	-1796.947304
TS ² ₃₂₋₃₃	-1720.014299	-1719.52756	-1720.213257	-1720.445312
TS ⁴ ₃₂₋₃₃	-1720.012032	-1719.52684	-1720.209596	-1720.4437
332	-1720.011703	-1719.5209	-1720.211585	-1720.443315
334	-1720.011431	-1719.521572	-1720.211119	-1720.443067

TS ² 33-34	-1720.013053	-1719.52429	-1720.211001	-1720.445255
TS ⁴ 33-34	-1720.010738	-1719.521806	-1720.208437	-1720.44362
34 ²	-1720.052604	-1719.558445	-1720.25183	-1720.480858
344	-1720.05063	-1719.557772	-1720.249614	-1720.47921