Organic and inorganic Gas Sensing Performance of BC3N2 monolayer:a

first-principles study

Guogang Liu¹, Tong Chen ^{2*}, Xiansheng Dong², Lin Huang², Zhonghui Xu¹, Xianbo Xiao^{3*}

1 School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China.

2 School of Energy and Mechanical Engineering, Energy materials computing center, Jiangxi University of Science and Technology, Nanchang 330013, China.

3 School of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China

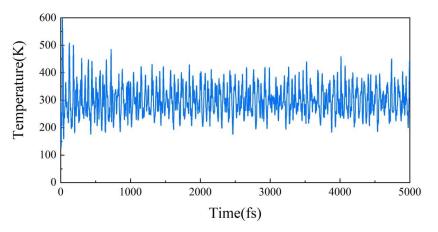


Fig. S1: The molecular dynamics simulation of 2D BC_3N_2 monolayer.

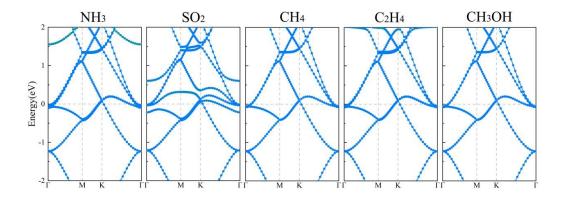


Fig. S2: The band structures of physical adsorption molecules of NH_3 (a), SO_2 (b), CH_4 (c), C_2H_4 (d) and CH_3OH (e) on BC_3N_2 monolayer.

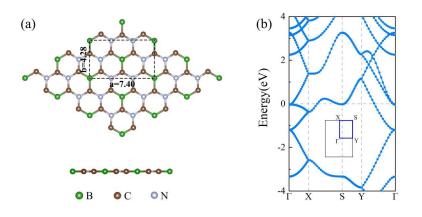


Fig. S3: The rectangled supercell of BC_3N_2 monolayer outlined with black dashed lines (a) and its corresponding electronic band structure (b).

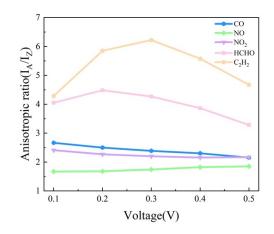


Fig. S4: The anisotropic ratio of the sensitivity of CO NO, NO₂, HCHO and C_2H_2 along the A direction to that along the Z direction (Ia/Iz)

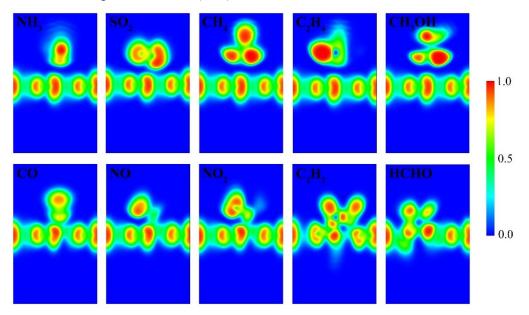


Fig. S5: The ELF maps for gas molecules adsorbed on BC_3N_2 monolayer.