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ESI1
XRD, elemental composition, and XPS of the LMO ceramics

Table S1
Atomic positions for the LMO samples annealed at different temperatures fann.

tann LMO-1150 LMO-1250 LMO-1350 LMO-1450
LMO(R-3¢) Mn30s4 LMO(R-3¢) LMO(Pnma) LMO(R-3c) LMO(Pnma)

Lal(6a) Mnl(4a) Lal(6a) Lal(4c) Lal(6a) Lal(4c)
occ. 0.9 occ. 0.9 occ. 0.9 occ. 0.9 occ. 0.9

X 0 0 0 0.0368(4) 0 0.0368(4)

y 1 0.25 1 0.25 1 0.25

z 0.25 -0.125 0.25 0.9958(9) 0.25 0.9958(9)
Mnl(6b) Mn2(8d) Mnl(6b) Mn1(4b) Mn1(6b) Mn1(4b)

X 0.333 0 0.333 0 0.333 0

y 0.6667 0.5 0.6667 0 0.6667 0

z 0.1667 0.5 0.1667 0.5 0.1667 0.5
Mn2(6a) OI1(16h)  Mn2(6a) Mn2(4c) Mn2(6a) Mn2(4c)
occ. 0.1 occ. 0.1 occ. 0.1 occ. 0.1 occ. 0.1

X 0 0 0 0.0368(4) 0 0.0368(4)

y 1 0.47 1 0.25 1 0.25

z 0.25 0.259 0.25 0.9958(9) 0.25 0.9958(9)
O1(18e) O1(18e) Ol(4c) O1(18e) Ol(4c)

X 0.471(15) 0.471(15) 0.003(4) 0.471(15) 0.003(4)

y 1 1 -0.25 1 -0.25

z 0.25 0.25 0.599(4) 0.25 0.599(4)

02(8d) 02(8d)

X 0.2915(25) 0.2915(25)

b% 0.0340(21) 0.0340(21)

z 0.734(4) 0.734(4)

t=1150°C | b

At.%
O - 63.86
Mn - 19.69
La-16.45

t = 1250°C d
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0 -53.57
Mn - 24.87

La-21.56

t=1250°C
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O -53.57
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Fig. S1. EDS data for the LMO-1150 (a), LMO-1250 (b), LMO-1350 (c), and LMO-1450 (d).
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The survey spectra of LMO samples show the existence of La, Mn, and O peaks (Fig.
S2(a, b)). In the high-resolution XPS spectra of La3d, two major peaks are observed, which
belong to the spin doublet La3ds» and La3ds» (Fig. S2(c)). However, the spectra have a more
complex profile due to the presence of charge transfer satellites (Fig. S2(c)), plasmon lines,
and MNN Auger lines (marked as A and B in Fig. S2(c)). Similar results are also observed for
the XPS spectrum of La>Os [1] and La-containing manganite compounds [2]. The binding
energy spectrum for LMO-1150 and LMO-1450 samples are in the range of 833.8-833.9 eV
(La3ds) and 850.7-850.9 eV (La3ds.), respectively. The positions for all peaks are listed in
Table S2. As for Ols XPS (Fig. S2(d)), three components with energy positions about 529.5
(A), 530.9 (B), and 532.8 (C) eV can be distinguished in the spectrum (see Table S2). Peak A
should be attributed to the oxygen of the magnetite crystal lattice, while components B and C
are due to adsorbed oxygen and hydroxyl groups or water on the surface, respectively [2].
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Fig. S2. XPS curves for the LMO-1150 and LMO-1450 compounds: (a) and (b) survey
spectrum; (c) La3d spectrum; and (d) Ols spectrum.



Table S2
Energy positions of the La3d, Ols and Mn2ps3,» X-ray photoelectron lines in the LMO samples.

. Binding energy (eV)
(:ES La3d Ols Mn2ps2 Mn2pi2
La3ds> | Sat | La3ds» | Sat A B C Mn2" | Mn?*" | Mn*" | Mn?" | Mn*" | Mn*"

1150 833.9 | 8383 | 850.9 | 855.2 | 529.5 | 530.9 | 532.8 | 641.3 | 641.9 | 642.8 | 651.9 | 653.5 | 655.3
1450 833.8 | 838.0 | 850.7 | 855.0 | 529.4 | 530.9 | 532.5 | 641.0 | 641.7 | 642.7 | 651.9 | 653.5 | 655.3

ESI2
Magnetic properties of the LMO ceramics
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Fig. S3. Isotherms of magnetization M(H) for the LMO-1150 (a), LMO-1250 (b), LMO-1350
(¢), and LMO-1450 (d).



ESI3

Magnetic properties of the LMO-1150 ceramics under high pressure
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Fig S4. Temperature dependences of Mrc(7) and Mzrc(T) at the field of H = 50 Oe for the
LMO-1150 under different pressures P = 0 GPa (a), 0.23 GPa (b), 0.38 GPa (c), 0.52 GPa (d),
0.56 GPa (e), and 0.60 GPa (f).
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Fig S5. Isotherms of the magnetization M(H) for the LMO-1150 under different pressures P =
0.23 GPa (a), 0.38 GPa (b), and 0.60 GPa (c).

ESI4
Electrochemical properties of the LMO ceramics
Calibrated with respect to RHE Ag/AgCl electrode was used as the reference electrode.
The calibration was performed in a high purity hydrogen saturated electrolyte with a Pt foil as
the working electrode. CV curves were run at a scan rate of 1 mV-s™, and the average of the
two potentials, when current crossed zero was taken to be the thermodynamic potential for the
hydrogen electrode reactions. The potential measured against the Ag/AgCl electrode was
converted according to the Nernst equation:
Evs. RuE = Ebs. Ag/AgCl T 0.197 + 0052pH
The RHE potential was for different electrolytes calculated as
Evs. RuE = Evs. agiagel + 0.6114V (for 0.5 M K»2SO4 solution, pH = 7.0);
Evs. RHE = Evs. agiagel T 0.6884V (for 0.5 M K;HPO4 solution, pH = 8.3);
Evs. RuE = Eus. aAgagcr +0.7416V (for 0.1 M K2B4O7 solution, pH = 9.2).
The overpotential (1) is calculated as the following equation: 1 = E,s. rug — 1.23 V.
All tests were performed in a climate controlled electrochemical laboratory
(temperature within 20-22 °C, atmospheric humidity 30-40%).
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Fig. S6. Electrochemical impedance spectroscopy (AC) of the LMO materials in different
electrolytes: 0.5 M K»SO4 (a, b), 0.5 M KoHPO4 (¢, d), and 0.1 M K2B4O7 (e, 1).
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Fig. S7. The equivalent scheme for EIS measurement.
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Fig. S8. CV curves for the LMO samples at different scan rates in 0.5 M K2SOs electrolyte
(potential window from 0.74 to 2.25 V vs RHE).
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Fig. S9. CV curves for the LMO samples at different scan rates in 0.5 M KoHPOq electrolyte
(potential window from 0.69 to 2.20 V vs RHE).
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Fig. S10. CV curves for the LMO samples at different scan rates in 0.1 M K2B207 electrolyte

(potential window from 0.74 to 2.25 V vs RHE).
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Table S3
OER activity for LMO at current density of 5 and 10 mA/cm? in different electrolytes.
Overpotential (mV)
Electrolyte Current density of 5/10 (mA/cm?)
LMO-1150 LMO-1250 LMO-1350 LMO-1450
K2S04 (0.5 M) 734/827 693/770 734/813 767/827
KoHPO4 (0.5 M)  445/615 465/674 453/641 600/674
K2B4O7 (0.1 M) 577/786 606/836 562/747 642/836
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Fig. S11. The XRD results for the LMO electrode after CP test in 0.5 M K»>SOs electrolyte (*
denotes KjoLax(SO4)s, PDF-2 #00-033-1019). The insets are the SEM images.
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Fig. S12. SEM images, EDS and elemental mapping for the LMO electrodes after CP test in
0.5 M K>SO4 electrolyte.
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