Supplementary Material for

Initial stage of carbonization of iron during hydrocarbons dissociation: a molecular dynamics study

Yubing Liu,^{a,b,c} Xiaoze Yuan,^{b,c} Kuan Lu,^{*b,c} Wei Chen,^a Yu-Fei Song,^{*a} Yong Yang,^{b,c} Yong-Wang Li,^{b,c} and Xiao-Dong Wen^{*b,c}

^aState Key Laboratory of Chemical Resource Engineering, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P.R. China
^cNational Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P. R. China

Fig. S1 Morphological evolution of Fe nanoparticles during C_2H_6 dissociation.

Fig. S2 Morphological evolution of Fe nanoparticles during C_2H_4 dissociation.

Fig. S3 Morphological evolution of Fe nanoparticles during C_2H_2 dissociation.

Fig. S4 Local configuration of the carbon chain formed by (a) C_2H_4 and (b) C_2H_2 at 10 ns reaction time.

Table S1. Density of carbon atoms (g/cm³) in Fe nanoparticles after the reaction.

	CH ₄	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂
Density	2.19	2.33	2.56	2.86