# **Supporting Information for**

## Intrinsic fluorescence from firefly oxyluciferin monoanions isolated in vacuo

Christina Kjær, Jeppe Langeland, Steen Brøndsted Nielsen

Contents

- Fig S1. Schematic of the experimental setup.
- Fig S2-S14: Individual gas-phase fluorescence spectra of OL<sup>-</sup>, dm-OL<sup>-</sup> and m-OL<sup>-</sup>
- Fig S15. Chemical structure of **m-OL**<sup>-</sup>.



**Fig. S1.** Schematic drawing of the LUNA2 setup.



## Fig. S2.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 300 K. The excitation wavelength was 561 nm. **dm-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



#### Fig. S3.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 533 nm. **dm-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



## Fig. S4.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 561 nm. **dm-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



#### Fig. S5.

Gas-phase fluorescence spectrum of **OL**<sup>-</sup> obtained at 300 K. The excitation wavelength was 533 nm. **OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



### Fig. S6.

Gas-phase fluorescence spectrum of **OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 533 nm. **OL**<sup>-</sup> was dissolved in MeCN for electrospray ionization.



#### Fig. S7.

Gas-phase fluorescence spectrum of **OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 533 nm. **OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



#### Fig. S8.

Gas-phase fluorescence spectrum of **OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 561 nm. **OL**<sup>-</sup> was dissolved in MeCN for electrospray ionization.



## Fig. S9.

Gas-phase fluorescence spectrum of  $OL^2$  obtained at 100 K. The excitation wavelength was 561 nm.  $OL^2$  was dissolved in MeOH for electrospray ionization.



#### Fig. S10.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 300 K. The excitation wavelength was 533 nm. **dm-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



## Fig. S11.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 561 nm. **dm-OL**<sup>-</sup> was dissolved in MeCN for electrospray ionization.



#### Fig. S12.

Gas-phase fluorescence spectrum of **m-OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 533 nm. **m-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization. The chemical structure is shown in **Fig. S15**.



## Fig. S13.

Gas-phase fluorescence spectrum of **dm-OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 514 nm. **dm-OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



#### Fig. S14.

Gas-phase fluorescence spectrum of **OL**<sup>-</sup> obtained at 100 K. The excitation wavelength was 488 nm. **OL**<sup>-</sup> was dissolved in MeOH for electrospray ionization.



Methyloxyluciferin anion (m-OL<sup>-</sup>)

Fig. S15. Chemical structures of **m-OL**<sup>-</sup> (keto and enol forms).