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1 Root-mean-square error analysis
We optimize the parameters σB and a∗SPB by minimizing the root-
mean-square error (RMSE) between the Cl− density profile ob-
tained from the different models. The definition of RMSE be-
tween two density profiles ρ1(r) and ρ2(r) is defined as:

RMSE =
1√
N

√√√√ N

∑
k=1

| ρ1(rk)−ρ2(rk) |2, (S1)

where N is the number of sampling points.
Specifically, in order to obtain the effective diameter of the PE

in the CG model, σB, ρ1 is replaced by ρCl from all-atom MD sim-
ulations, whereas ρ2 by ρCl

CG, obtained from the CG model, which
depends on σB. The values of the optimized diameter σB for dif-
ferent salt concentrations are shown in Table. S1. We choose the
average over the four salt concentrations, i.e. σB = 0.54 nm.

On the other hand, in the case of SPB theory, ρ2 is replaced
by ρCl

SPB, which depends on aSPB. The optimal values from fitting
a∗SPB at different salt concentrations are shown in Table S1. Also
in this case we choose the average over the different salt concen-
trations, i.e. a∗SPB = 0.44 nm, used throughout the work (also for
the SLPB theory).

Table S1 The optimal values of σB, σBCl obtained for the CG model and
a∗SPB for the SPB theory in different salt concentrations.

ρ0 [M] 0.13 0.26 0.52 1.0
σB [nm] 0.54 0.54 0.52 0.54
σBCl [nm] 0.46 0.46 0.45 0.46
a∗SPB [nm] 0.50 0.45 0.43 0.39

2 Soft potential enhanced linear Poisson-
Boltzmann theory

When βeφ(r)≪ 1, which corresponds to small electrostatic poten-
tials, we can linearize the full PB equation. This linear approxima-
tion is commonly referred to as the Debye-Hückel approximation.
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Fig. S1 (a) The lth monomer in the PDADMA is shown in the zoomed
inset. The atomistic structure is projected onto the (r,θ) plane and the
orientation of N+ is recorded as θ l ; the N+, C and H atoms are colored
in red, blue, and gray, respectively. From (a) to (b), the orientation of
a N+ atom in the lth monomer and the ion number density ρCl,l around
it are rotated by −θ l . Then ρCl,l are averaged over l to get ρCl in panel
(b) for different salt concentrations. In the center of each density map
we schematically show the atomistic structure of one monomer.

Equation (3) in the main text then becomes

∇
2
φLPB(r) = κ

2
φLPB(r), (S2)

where 1/κ is the Debye or screening length1. The analytic solu-
tion of Eq. (S2) for r > a is2

φLPB(r) =
λ

2πaκε

K0(κr)
K1(κa)

, (S3)

where K0 and K1 are modified Bessel functions of order zero
and one, correspondingly. The soft-potential enhancement can
be used for both the full and linearized PB theories. Finally, for
the two-PE case, the corresponding force from the linear theory
fSLPB and the potential of mean force (PMF) are obtained by nu-
merically solving Eq. (S2) similarly to the full PB equation, with
the boundary conditions at the surface of the two disks with radii
a = aSLPB (cf. Fig. 1(g) in the main text) ∇φ · n̂|x2+y2=a2 = λ/2πaε

and ∇φ · n̂|(x−d)2+y2=a2 = λ/2πaε.

3 The atomic structure of PDADMA
Our atomistic PDADMA MD model consists of 10 monomers and
the polymer axis is set along the z direction. Each monomer cor-
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Fig. S2 The orientational self-correlation function of a single PDADMA
as a function of time t on a semilogarithmic scale. The correlation time
tc = 15 ns corresponds to the slope of ln(C(t)).

responds to a backbone length of Lz/10. Since the charged groups
of the monomers adopt a helix-like structure (see Fig. 4(a) in the
main text) for the straightened PDADMA chain, we define the
location of N+ of the lth monomer by (rl ,θ l ,zl), l = 1,2, ...,10 in
cylindrical coordinates with longitudinal axis parallel to (and cen-
tered at) the backbone of the PE. The ion number density around
the lth monomer (in the region zl −Lz/20 < z < zl +Lz/20) is pro-
jected into a two-dimensional density map ρCl,l(r,θ) in polar co-
ordinates. The ion number densities around different monomers
are similar but the angular orientation of the density follows the
relative orientation of the monomer θ l . To account for this, we ro-
tate the ion number density map by −θ l degrees as ρCl,l(r,θ −θ l),
to overlay the orientations of the monomers such that superposed
ion number density data in terms of orientation with respect to
monomer is obtained. Then we take an average over ρCl,l to
get the density ρCl = ⟨ρCl,l(r,θ − θ l)⟩l for different salt concen-
trations as shown in Fig. S1(b). This ion number density distribu-
tion around the PE monomers concretely shows the origins of the
two-peak profile in the ion distribution in the main manuscript:
ions form a semi-circular ring around the charged group with ion
condensation localization visible both at the sides and at the tip
of the charged group, leading to the binodal ion number density
distribution. Similar findings were already reported in Ref. 3. In
particular, the Cl− ions stack mainly on the directions ±π/2 and
0, corresponding to the first and the second peaks of Cl− in the
radial density profiles, respectively. This configuration is caused
by two main interactions on Cl− ions: attraction from positively
charged group centered at N+ atoms and steric repulsion from the
surrounding neutral atoms. The positionally correlated configu-
rations of the PE charge groups and its effect on the ion density
span over different salt concentrations.

4 The orientational self-correlation function
The atomistic-detail PDADMA molecule spans the z axial direction
of the simulation box as a periodic molecule. However, it can both
translate and rotate along the z axis during the MD simulations.
The orientation of the chain on the z = 0 plane is given by the
angle θ 1 as defined in Fig. S1 (l = 1). During a 100 ns simulation

we measured the time dependence of θ 1(t) and its time average
θ̄ 1 = ⟨θ 1(t)⟩t . We then define the normalized orientational (fluc-
tuation) self-correlation function C(t) as

C(t) =
⟨∆θ 1(s)∆θ 1(s+ t)⟩s

⟨∆θ 1(s)∆θ 1(s)⟩s
, (S4)

where ∆θ 1 = θ 1 − θ̄ 1. As an example, for a single PDADMA chain
at salt concentration ρ0 = 0.26 M, the self-correlation function de-
creases exponentially as exp(−t/tc) as shown in Fig. S2. From this
data we can estimate the self-rotational correlation time as tc ≈ 15
ns.

5 Comparison between SPB and SLPB theories

Fig. S3 The mean relative error of the electrostatic potential ∆φ as a
function of linear charge density λ and dimensionless effective radius κa.
The circles represent the reference points for PDADMA with concen-
trations ρ0 = 0.13 M, 0.26 M, 0.52 M and 1.0 M, from left to right,
respectively.

Fig. S4 The relative errors in the mean force ∆ f (lines) and electrostatic
potential ∆φ (circles) between the SPB and LSPB theories for the case
of two PEs as a function of their separation.

We addressed the differences in the electrostatic potential
φSPB(r) and φSLPB(r) with the same linear charge density λ , ef-
fective radii aSLPB = aSPB = a and monovalent salt concentra-
tion ρ0. A theoretical comparison between the two approx-
imations is reported in Ref. 4. However, here we focus on
PDADMA. The difference is expressed as the relative error ∆φ ≡
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Fig. S5 Comparison between the PMFs as a function of distance d obtained from the different models and different salts. The abbreviation AA refers
to all-atom MD simulations. The insets show details of the oscillating regions in the PMF profiles.

Fig. S6 The Cl− and Na+ number density profiles along the x axis connecting the centers of the two PEs from the CG-MD model (as sketched in the
inset). The center-to-center distance d changes from 1.1 nm to 3.0 nm.

⟨|φSLPB(r)−φSPB(r)|/φSPB(r)⟩r, which is averaged over a < r <

Lx/2. Using the Debye length κ−1 as a unit of length, the only
characteristic length scale in the system is κa. Thus, ∆φ solely de-
pends on λ and κa. We show this in Fig. S3. As expected, for large
values of λ , small values of a and low salt concentration ρ0 (cor-
responding to low κ), we find the highest-error region (red). We
can see that in the case of PDADMA (circles), the PB and LPB are
almost identical at all salt concentrations considered here. This
is due to a relatively small linear charge density λ = 1.767 e/nm,

giving rise to small electrostatic potential φ . We conclude that
in the case of PDADMA the linear approximation is successful in
capturing the ion distribution.

For the two-PDADMA case, the relative error of
mean force and electrostatic potential at x = d/2
are expressed as ∆ f ≡ | fSLPB − fSPB|/ fSPB and ∆φ ≡
⟨|φSLPB(d/2,y)−φSPB(d/2,y)|/φSPB(d/2,y)⟩y, respectively;
the latter is averaged over −Ly/2 < y < Ly/2. Their comparison
is shown in Fig. S4. In contrast to the single PE case, the mean
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force from SLPB is very different from that of the SPB, especially
when the two PEs are close.

6 Linear-linear scale figure of PMF
In Fig. 3 of the main manuscript we show a comparison between
the PMFs between two identical PEs obtained from all-atom MD
and CG-MD simulations, as well as from the SPB and SLPB theo-
ries. For completeness, in Fig. S5 we report the same data plotted
on a linear-linear scale.

7 Ion density around two CG-MD PDADMAs
In the CG model, we can examine the ion number densities
around two PEs. As shown in Fig. S7, a significant fraction of the
Cl− ions accumulate in the region between the two PEs when the
distance between the two rods is relatively short (d ≤ 1.5 nm). In
Fig. S7 we report the two-dimensional number density for d = 1.2
nm and d = 2.0 nm.

To better quantify this, we obtained the one-dimensional cross
section of the ion-number density profiles between the two PEs
at 0 < x < d,y = 0 (see the inset of Fig. S6) for different values of
d, and compared them to the single-PE case, as shown in Fig. S6.
When the two rods are close (d = 1.1 nm), the peak value of the
Cl− ion-number density is 3 to 4 times larger than that of the
single-PE case. On the other hand, the Na+ ion number density is
much lower than that of a single rod. This is due to the stronger
electrostatic repulsion, as well as the Cl− ions occupying more
space in between the rods.

8 Limitation of the SPB approach
In the original work of Vahid et al.5 where the SPB theory was
introduced it was applied to model monovalent ion distributions
around single polystyrene sulphonate molecules. The correspond-
ing ion densities were accurately reproduced for a wide range of
system parameters, including salt and ion sizes. We performed
additional testing for the case of two such PEs with atomistic-level
MD simulations and the same setup as for the PDADMA molecules
here. However, we found that there was an attractive force in-
duced between two polystyrene sulphonate molecules at short
distances. Such attraction is not expected in the weak-coupling
regime and here it may be caused by entropy loss due to the axi-
ally straight, infinite PE chain simulation setup. Thus, we did not
consider this case further in the present work.

Fig. S7 The Cl− density map around two rods with d = 1.2 nm and
d = 2.0 nm from the CG-MD model. The added salt concentration is
0.26 M.
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