Factors Allowing Small Monovalent Li⁺ to Displace Ca²⁺ in Proteins

Cédric Grauffel^{†*}, Wei-Hsiang Weng[†], Carmay Lim^{†,‡,*}

[†]Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan

[‡]Department of Chemistry, National Tsing Hua University, Hsinchu 300 Taiwan

Supporting Information Figure S1a. Models for $B_2 Ca^{2+}$ -sites containing two backbone ligands.

Supporting Information Figure S1b. Models for B₃ Ca²⁺-sites containing three backbone ligands.

Supporting Information Figure S1c. Models for B₄ Ca²⁺-sites containing four backbone ligands.

Supporting Information Figure S1d. Models for $(D/E)_2 Ca^{2+}$ -sites containing two carboxylate ligands.

Supporting Information Figure S1e. Models for (D/E)₃ Ca²⁺-sites containing three carboxylate ligands.

Supporting Information Figure S1f. Models for (D/E)₄ Ca²⁺-sites containing four carboxylate ligands.

Supporting Information Figure S1g. Models for B(D/E) Ca²⁺-sites containing a backbone ligand and a carboxylate ligand.

Supporting Information Figure S1h. Models for $B_2(D/E) Ca^{2+}$ -sites containing two backbone ligands and a carboxylate ligand.

Supporting Information Figure S1i. Models for $B_3(D/E) Ca^{2+}$ -sites containing three backbone ligands and a carboxylate ligand.

Supporting Information Figure S1j. Models for $B_4(D/E) Ca^{2+}$ -sites containing four backbone ligands and a carboxylate ligand.

Supporting Information Figure S1k. Models for $B(D/E)_2 Ca^{2+}$ -sites containing a backbone ligand and two carboxylate ligands.

Supporting Information Figure S11. Models for $B_2D_2Ca^{2+}$ -sites containing two backbone and two carboxylate ligands.

Supporting Information Figure S1m. Models for $B_3D_2Ca^{2+}$ -sites containing three backbone and two carboxylate ligands.

Supporting Information Figure S1n. Models for B(D/E)₃ Ca²⁺-sites containing a backbone ligand and three carboxylate ligands.

Supporting Information Figure S10. Models for $B_2(D/E)_3 Ca^{2+}$ -sites containing two backbone and three carboxylate ligands.

Supporting Information Figure S1p. Models for $B_3(D/E)_3 Ca^{2+}$ -sites containing three backbone and three carboxylate ligands.

Supporting Information Figure S1q. Models for $BN_2(D/E)_2 Ca^{2+}$ -sites containing three amide (1 backbone and two Asn/Gln) and three carboxylate ligands.

Supporting Information Figure S1r. Models for $B_x Ca^{2+}$ -sites with a 2nd-shell Asp/Glu. Relative metal exchange free energy of the $B_x D Ca^{2+}$ -site without the 2nd-shell Asp/Glu is in grey for comparison. The thickest line corresponding to the system with 2nd-shell Asp/Glu is colored with a gradient reflecting the change of free energy compared with the site without 2nd-shell (yellow = more Ca-selective, blue = more Li-selective).

Supporting Information Figure S1s. Models for B_xD Ca²⁺-sites with a 2nd-shell Asp/Glu. Relative metal exchange free energy of the B_xD Ca²⁺-site without the 2nd-shell Asp/Glu is in grey for comparison. The thickest line corresponding to the system with 2nd-shell Asp/Glu is colored with a gradient reflecting the change of free energy compared with the site without 2nd-shell (yellow = more Ca-selective, blue = more Li-selective).

Supporting Information Figure S1t. Models for $B_xD_2 Ca^{2+}$ -sites with a 2nd-shell Asp/Glu. Relative metal exchange free energy of the $B_xD Ca^{2+}$ -site without the 2nd-shell Asp/Glu is in grey for comparison. The thickest line corresponding to the system with 2nd-shell Asp/Glu is colored with a gradient reflecting the change of free energy compared with the site without 2nd-shell (yellow = more Ca-selective, blue = more Li-selective).

Supporting Information Figure S1u. Models for $B_xD_x Ca^{2+}$ -sites with a 2nd-shell Arg/Lys. Relative metal exchange free energy of the $B_xD_x Ca^{2+}$ -site without the 2nd-shell Arg/Lys is in grey for comparison. The thickest line corresponding to the system with 2nd-shell Arg/Lys is colored with a gradient reflecting the change of free energy compared with the site without 2nd-shell (yellow = more Ca-selective, blue = more Li-selective).

