## **Electronic Supplementary Information**

## Solubilization and Coordination of the HgCl<sub>2</sub> Molecule in Water, Methanol, Acetone, and Acetonitrile: an X-ray Absorption Investigation

Matteo Busato,<sup>\*,a</sup> Giuseppe Fazio,<sup>a</sup> Francesco Tavani,<sup>a</sup> Simone Pollastri,<sup>b</sup> and Paola D'Angelo<sup>\*,a</sup>

<sup>a</sup>Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy <sup>b</sup>Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14, km 163.5, I-34149, Basovizza, Trieste, , Italy

\*Corresponding authors <u>E-mail</u>: matteo.busato@uniroma1.it p.dangelo@uniroma1.it

## 1. EXAFS data analysis: three body distributions

In the analysis of the EXAFS part of the absorption spectra collected on the HgCl<sub>2</sub> crystal and on the 0.1 M HgCl<sub>2</sub> solutions in water, methanol (MeOH), acetone (Act), and acetonitrile (AN), the CI-Hg-CI contribution has been also considered. In the GNXAS formalism, for a three body distribution the two shortest distances  $r_1$  and  $r_2$  within the  $\varphi$  angle in between are considered.<sup>1,2</sup> Since these distances and angle are correlated, a covariance matrix containing bond and angle variances as well as bond-angle correlations is defined as follows:

$$\begin{pmatrix} \sigma_{r_1}^2 & \rho_{r_1r_2}^2 & \rho_{r_1\varphi}^2 \\ - & \sigma_{r_2}^2 & \rho_{r_2\varphi}^2 \\ - & - & \sigma_{\varphi}^2 \end{pmatrix}$$

where the  $\rho_{ij}$  terms are expressed as  $\rho_{ij} = \sigma_{ij}^2 / \sqrt{\sigma_i^2 \sigma_j^2}$ . In this way,  $\rho_{ij}$  is dimensionless and defined in the  $-1 \le \rho_{ij} \le 1$  range. For  $\rho_{ij} = 0$ , bonds (or angles) vibrate independently, while for  $\rho_{ij} = \pm 1$  there is full correlation between the parameters, which both expand or contract at the same time for +1, while one expands the other contracts in case of -1. Note that in case of the CI-Hg-CI distribution the terms for  $r_1$  and  $r_2$  are identical, as there is only one Hg-CI path related to the first shell chlorine atoms.

**Table S1.** Optimized parameters for the three body CI-Hg-CI distribution as determined from the EXAFS data analysis of the Hg L<sub>3</sub>-edge absorption spectra of crystalline HgCl<sub>2</sub> and of the HgCl<sub>2</sub> 0.1 M solutions in water, MeOH, Act, and AN. The bond angle values are reported with the standard deviation  $\sigma_{\varphi}$  in parenthesis, while the  $\rho_{rr}$  and  $\rho_{r\varphi}$  terms are referred to the bond-bond and bond-angles correlations, respectively.

|                                       | CI-Hg-CI angle (°) | $ ho_{rr}$ | $ ho_{r arphi}$ |
|---------------------------------------|--------------------|------------|-----------------|
| HgCl <sub>2</sub>                     | 180(5)             | 0.4        | 0.2             |
| HgCl <sub>2</sub> in H <sub>2</sub> O | 180(4)             | 0.5        | 0.3             |
| HgCl₂ in MeOH                         | 180(4)             | 0.5        | 0.3             |
| HgCl₂ in Act                          | 180(4)             | 0.4        | 0.2             |
| HgCl₂ in AN                           | 180(4)             | 0.2        | 0.1             |

**Table S2.** Optimized non-structural parameters for the ionization energy  $E_0$  and for the amplitude reduction factor  $S_0^2$  as determined from the EXAFS data analysis of the Hg L<sub>3</sub>-edge absorption spectra of crystalline HgCl<sub>2</sub> and of the HgCl<sub>2</sub> 0.1 M solutions in water, MeOH, Act, and AN. The  $E_0$  is given as difference with respect to the inflection point of the experimental spectrum after the pre-edge peak.

|                                       | <i>E</i> <sub>0</sub> - <i>E</i> <sub>t</sub> (eV) | S0 <sup>2</sup> |
|---------------------------------------|----------------------------------------------------|-----------------|
| HgCl <sub>2</sub>                     | 2.1                                                | 0.96            |
| HgCl <sub>2</sub> in H <sub>2</sub> O | 0.3                                                | 0.95            |
| HgCl₂ in MeOH                         | 0.2                                                | 0.90            |
| HgCl₂ in Act                          | 1.2                                                | 1.00            |
| HgCl₂ in AN                           | 0.0                                                | 0.96            |

**Table S3.** Double-electron excitation edge parameters as determined from the EXAFS data analysis of the Hg L<sub>3</sub>-edge absorption spectra of crystalline HgCl<sub>2</sub> and of the HgCl<sub>2</sub> 0.1 M solutions in water, MeOH, Act, and AN, compared with the Z + 1 predictions.<sup>†</sup>

|                                       |                                     | <i>E</i> d - <i>E</i> t (eV) | Н    | Δ <i>Ε</i> (eV) | <i>E<sub>Z+1</sub></i> (eV) |
|---------------------------------------|-------------------------------------|------------------------------|------|-----------------|-----------------------------|
| HgCl <sub>2</sub>                     | 2p <sub>3/2</sub> 5p <sub>3/2</sub> | 70                           | 0.09 | 7               | 73                          |
|                                       | 2p <sub>3/2</sub> 5p <sub>1/2</sub> | -                            | -    | -               | 95                          |
| HgCl <sub>2</sub> in H <sub>2</sub> O | 2p <sub>3/2</sub> 5p <sub>3/2</sub> | 62                           | 0.13 | 14              | 73                          |
|                                       | 2p <sub>3/2</sub> 5p <sub>1/2</sub> | 94                           | 0.02 | 7               | 95                          |
| HgCl <sub>2</sub> in MeOH             | 2p <sub>3/2</sub> 5p <sub>3/2</sub> | 61                           | 0.16 | 14              | 73                          |
|                                       | 2p <sub>3/2</sub> 5p <sub>1/2</sub> | 92                           | 0.04 | 13              | 95                          |
| HgCl <sub>2</sub> in Act              | 2p <sub>3/2</sub> 5p <sub>3/2</sub> | 67                           | 0.04 | 3               | 73                          |
|                                       | 2p <sub>3/2</sub> 5p <sub>1/2</sub> | -                            | -    | -               | -                           |
| HgCl <sub>2</sub> in AN               | 2p <sub>3/2</sub> 5p <sub>3/2</sub> | 64                           | 0.24 | 15              | 73                          |
|                                       | 2p <sub>3/2</sub> 5p <sub>1/2</sub> | 97                           | 0.02 | 7               | 95                          |

<sup>†</sup>The double-excitation energy onset  $E_d$  is measured from the correspondent inflection point of the experimental spectrum  $E_t$ . The absorption discontinuities *H* are given in jump units.  $\Delta E$  are the energies of the double-electron channel width.

**Table S4.** Best-fit structural parameters for the Hg-Cl and Hg-O SS paths obtained from the analysis of the Hg  $L_3$ -edge EXAFS spectrum collected on the 0.1 M HgCl<sub>2</sub> solution in water, carried out with the model with three water molecules around the HgCl<sub>2</sub> unit.<sup>†</sup>

|       | Ν   | R (Å)   | σ² (Ų)   | β      |
|-------|-----|---------|----------|--------|
| Hg-Cl | 2.0 | 2.32(2) | 0.003(2) | 0.3(1) |
| Hg-O  | 3.0 | 2.78(4) | 0.075(4) | 0.8(2) |

<sup>†</sup>*N* is the coordination number, *R* the average distance,  $\sigma^2$  the Debye-Waller factor, and  $\beta$  the asymmetry index.

**Table S5.** Structural and non-structural parameters obtained from the XANES analysis of the Hg L<sub>3</sub>edge experimental spectrum collected on the 0.1 M HgCl<sub>2</sub> aqueous solution for a HgCl<sub>2</sub> molecule with a 170° and 175° CI-Hg-CI angle, plus three water molecules.  $R_{Hg-CI}$  and  $R_{Hg-O}$  are respectively the Hg-CI and Hg-O distances,  $E_0$  is the threshold energy,  $E_F$  the Fermi energy,  $E_S$  and  $A_S$  the plasmon energy onset and amplitude, and  $\Gamma_{exp}$  the experimental resolution.

| CI-Hg-CI angle | R <sub>Hg-Cl</sub> (Å) | <i>R</i> <sub>Hg-O</sub> (Å) | E <sub>0</sub> (eV) | E <sub>F</sub> (eV) | Es (eV) | As   | $\Gamma_{exp}$ (eV) |
|----------------|------------------------|------------------------------|---------------------|---------------------|---------|------|---------------------|
| 175°           | 2.21(8)                | 2.75(8)                      | 0.5                 | -3.8                | 11.2    | 11.4 | 3.6                 |
| 170°           | 2.21(8)                | 2.75(8)                      | 0.5                 | -3.9                | 11.1    | 12.4 | 3.5                 |
|                |                        |                              |                     |                     |         |      |                     |

**Table S6.** Structural and non-structural parameters obtained from the XANES analysis of the Hg L<sub>3</sub>edge experimental spectrum collected on the 0.1 M HgCl<sub>2</sub> solution in Act for the structure with three solvent molecules.  $R_{\text{Hg-Cl}}$  and  $R_{\text{Hg-O}}$  are respectively the Hg-Cl and Hg-O distances,  $E_0$  is the threshold energy,  $E_F$  the Fermi energy,  $E_S$  and  $A_S$  the plasmon energy onset and amplitude, and  $\Gamma_{exp}$ the experimental resolution.

| <i>R</i> нg-сі (Å) | <i>R</i> н <sub>g</sub> -о (Å) | <i>E</i> <sub>0</sub> (eV) | <i>E</i> ⊧ (eV) | Es (eV) | As   | $\Gamma_{exp}$ (eV) |
|--------------------|--------------------------------|----------------------------|-----------------|---------|------|---------------------|
| 2.24(8)            | 2.68(8)                        | -1.26                      | -4.7            | 3.6     | 13.5 | 3.1                 |



**Figure S1.** Upper panel: analysis of the Hg L<sub>3</sub>-edge EXAFS spectrum collected on the 0.1 M HgCl<sub>2</sub> solution in water, carried out with the model with three water molecules around the HgCl<sub>2</sub> unit. From the top the best-fit theoretical signals Hg-Cl accounting for the two first shell chlorine atoms, Hg-O accounting for the three oxygen atoms of the water molecules, and for the three-body Cl-Hg-Cl distribution are shown, together with the total theoretical spectrum (blue line) compared with the experimental one (red dots) and the resulting residuals (blue dots). Lower panel: non-phase shift corrected Fourier Transforms of the best-fit EXAFS theoretical signal (blue line), of the experimental data (red dots) and of the residual curve (blue-dashed line). The FT has been calculated in the 3.0 – 16.7 Å<sup>-1</sup> *k*-range.



**Figure S2**. Comparison between the Hg L<sub>3</sub>-edge XANES experimental spectra collected on the 0.1 M HgCl<sub>2</sub> aqueous solution (red dots) with the theoretical signals (blue lines) calculated for a HgCl<sub>2</sub> molecule with a 175° (left panel) and 170° (right panel) Cl-Hg-Cl angle, plus three water molecules. The obtained residual function  $R_{sq}$  and the optimized clusters are shown as insets.



**Figure S3**. Comparison between the Hg  $L_3$ -edge XANES experimental spectrum collected on the 0.1 M HgCl<sub>2</sub> Act solution (red dots) compared with the theoretical signal (blue line) calculated with a starting structure where three Act molecules coordinate the HgCl<sub>2</sub> unit in a trigonal bipyramidal structure. The optimized cluster is shown as inset.

## References

- 1 A. Filipponi and A. Di Cicco, X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory, *Phys. Rev. B*, 1995, **52**, 15122–15134.
- A. Filipponi and A. Di Cicco, X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. II. Data analysis and applications, *Phys. Rev. B*, 1995, **52**, 15135–15149.