Supporting Information

A Powder XRD, Solid State NMR and Calorimetric Study of the Phase Evolution in Mechanochemically Synthesized Dual Cation (Cs_x(CH₃NH₃)₁₋ _x)PbX₃ Lead Halide Perovskite Systems[†][‡]

Sai S.H. Dintakurti,^{†#} David Walker,[†] Tobias A. Bird,[¶] Yanan Fang,[§] Tim White,[§]* and John V. Hanna[†]§*

[†] Department of Physics, University of Warwick, Coventry, West Midlands, United Kingdom, CV4 7AL

[#] Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798

[¶] Department of Chemistry, University of Warwick, Coventry, West Midlands, United Kingdom, CV4 7AL

§ School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798

Corresponding email: j.v.hanna@warwick.ac.uk

KEYWORDS: Mechanochemical synthesis, hybrid lead halide perovskites, multinuclear solid state NMR, phase evolution, chemical shielding, cesium-methylammonium miscibility.

[†] The experimental data for this study are provided as a supporting dataset from WRAP, the Warwick Research Archive Portal at <u>http://wrap.warwick.ac.uk/160750/</u>

‡ Electronic supplementary information (ESI) available: Supporting experimental and materials characterization including HRTEM, ²⁰⁷Pb MAS NMR data, high resolution laboratory source powder XRD data for the Cl series and Br series, DSC data, UV/vis data with Tauc plots, in addition to tables summarising the ¹³³Cs, ²⁰⁷Pb and ¹H T_1 (spin-lattice) relaxation times and the variable temperature evolution of refined lattice parameters for each system. See DOI:10.1039/XXXXXXX.

Figure S1. Indexed selected area electron diffraction (SAD) patterns of selected powder samples prepared under mechanochemical conditions.

Figure S2. A simulation of the ¹*J*(Pb,Br) coupling observed on the ²⁰⁷Pb MAS NMR data from CsPbBr₃ measured at 14.1 T. This simulation was undertaken using the DMFiT software package and a ¹*J*(Pb,Br) coupling constant of 2360 ± 20 Hz was measured.

Figure S3. Room temperature high resolution laboratory source PXRD data and Rietveld refinement fits from the $Cs_xMA_{1-x}PbCl_3$ (x = 0 - 1) solid solution series.

Figure S4. Room temperature high resolution synchrotron PXRD data and Rietveld refinement fits from the $Cs_xMA_{1-x}PbBr_3$ (x = 0 - 1) solid solution series.

Figure S5. DSC data from the $(Cs_xMA_{1-x})PbCl_3$ solid solution series showing phase transitions involving a change in latent heat.

Figure S6. DSC data from the $(Cs_xMA_{1-x})PbBr_3$ solid solution series showing phase transitions involving a change in latent heat.

Figure S7. Tauc plots from the UV/vis data from the $(Cs_xMA_{1-x})PCl_3$ (x = 0 - 1) solid solution series enabling a determination of the bandgap variation across each system.

Figure S8. Tauc plots from the UV/vis data from the $(Cs_xMA_{1-x})PBr_3$ (x = 0 - 1) solid solution series enabling a determination of the bandgap variation across each system.

Nominal	133C s T (s)	207 Ph T_{1} (s)	¹ H $T_{\rm r}$ (s)
composition	CST(S)	101(8)	11 1 (8)
MAPbBr ₃	-	1.3 (± 0.3)	18.3 (± 3.7)
$Cs_{0.13}MA_{0.87}PbBr_3$	47.0 (± 9)	2.2 (± 0.4)	5.7 (± 1.1)
$Cs_{0.25}MA_{0.75}PbBr_{3}$	32.6 (± 6)	1.2 (± 0.2)	3.5 (± 0.7)
$Cs_{0.37}MA_{0.63}PbBr_3$	24.5 (± 5)	2.9 (± 0.6)	4.9 (± 1.0)
$Cs_{0.50}MA_{0.50}PbBr_{3}$	14.5 (± 3)	3.2 (± 0.6)	3.3 (± 0.7)
$Cs_{0.63}MA_{0.37}PbBr_3$	8.1 (± 2)	5.0 (± 1.0)	2.9 (± 0.6)
$Cs_{0.75}MA_{0.25}PbBr_3$	17.4 (± 3)	3.5 (± 0.7)	1.4 (± 0.3)
$Cs_{0.87}MA_{0.13}PbBr_3$	21.8 (± 4)	5.9 (± 1.2)	2.1 (± 0.4)
CsPbBr ₃	54.2 (± 10)	5.4 (± 1.1)	-
MAPbCl ₃	-	1.6 (± 0.3)	7.1 (± 1.4)
$Cs_{0.13}MA_{0.87}PbCl_{3}$	43.5 (± 8.7)	1.1 (± 0.2)	0.9 (± 0.2)
$Cs_{0.25}MA_{0.75}PbCl_3$	34.4 (± 6.9)	1.3 (± 0.3)	1.0 (± 0.2)
$Cs_{0.37}MA_{0.63}PbCl_{3}$	28.3 (± 5.7)	1.4 (± 0.3)	0.8 (± 0.2)
$Cs_{0.50}MA_{0.50}PbCl_3$	29.8 (± 6.0)	1.5 (± 0.3)	2.5 (± 0.5)
$Cs_{0.63}MA_{0.37}PbCl_{3}$	16.0 (± 3.2)	1.5 (±0.3)	1.0 (± 0.2)
Cs0.75MA0.25PbCl3	16.7 (± 3.3)	1.5 (±0.3)	2.7 (± 0.5)
Cs _{0.87} MA _{0.13} PbCl ₃	8.0 (± 1.6)	1.5 (±0.3)	1.3 (± 0.3)
CsPbCl ₃	50.8 (± 10.0)	1.7 (±0.3)	-

Table S1. The ¹³³Cs, ²⁰⁷Pb and ¹H T_{1} (spin-lattice) relaxation times as measured by the saturation-recovery method.

Tomporatura	~	2	Cell	
Temperature (V)		$\begin{pmatrix} c \\ (\lambda) \end{pmatrix}$	volume	R Bragg
(K)	(A)	(A)	$(Å^3)$	
381.28	8.2676(1)	5.8901(9)	402.614(2)	1.93
383.15	8.2680(1)	5.8899(2)	402.635(0)	1.92
385.14	8.2687(2)	5.8896(4)	402.684(7)	1.92
387.18	8.2694(2)	5.8892(8)	402.728(9)	1.92
389.04	8.2702(4)	5.8890(0)	402.789(6)	1.92
391.02	8.2711(1)	5.8886(8)	402.851(3)	1.93
393.06	8.2720(6)	5.8882(0)	402.911(2)	1.95
394.80	8.2731(7)	5.8877(7)	402.990(4)	1.95
396.81	8.2741(1)	5.8872(9)	403.049(3)	1.97
398.66	8.2753(4)	5.8868(1)	403.136(5)	1.99
400.53	8.2765(9)	5.8862(4)	403.218(8)	2.03
402.24	8.2780(0)	5.8855(6)	403.309(8)	2.04
404.07	8.2796(2)	5.8847(4)	403.411(6)	2.07
405.98	8.2816(3)	5.8839(7)	403.554(1)	2.17
407.84	8.2835(2)	5.8829(5)	403.668(9)	2.21
409.93	8.2855(4)	5.8818(2)	403.787(6)	2.25
411.95	8.2872(1)	5.8805(9)	403.866(4)	2.26
413.48	8.2884(6)	5.8797(2)	403.928(2)	2.26
415.50	8.2897(0)	5.8787(5)	403.982(4)	2.26
417.50	8.2909(2)	5.8778(6)	404.040(6)	2.25
419.34	8.2919(9)	5.8771(8)	404.097(8)	2.31
421.24	8.2927(7)	5.8766(6)	404.138(3)	2.37
422.91	8.2936(3)	5.8763(1)	404.197(4)	2.44
425.05	8.2946(2)	5.8760(1)	404.273(2)	2.49
427.06	8.2954(0)	5.8756(8)	404.326(5)	2.51
428.97	8.2962(9)	5.8754(9)	404.400(8)	2.56
430.38	8.2970(7)	5.8753(3)	404.465(5)	2.59

Table S2. Evolution of refined lattice parameters in CsPbBr₃.

Tomporatura	~	2	Cell	
(V)	$(\overset{a}{\lambda})$	$\begin{pmatrix} c \\ (\lambda) \end{pmatrix}$	volume	R Bragg
(K)	(A)	(A)	$(Å^3)$	
346.05	8.2694(7)	5.8934(6)	403.019(2)	1.83
348.03	8.2701(1)	5.8933(1)	403.071(9)	1.84
350.26	8.2708(1)	5.8931(1)	403.125(8)	1.82
352.15	8.2717(0)	5.8928(8)	403.197(0)	1.84
354.15	8.2725(9)	5.8926(1)	403.265(9)	1.83
356.12	8.2735(2)	5.8923(4)	403.337(0)	1.85
358.10	8.2744(6)	5.8919(8)	403.404(0)	1.85
360.00	8.2754(8)	5.8915(6)	403.474(3)	1.85
361.69	8.2765(1)	5.8911(9)	403.550(3)	1.87
363.56	8.2776(3)	5.8907(8)	403.631(4)	1.88
365.43	8.2788(8)	5.8902(7)	403.717(8)	1.88
367.50	8.2801(6)	5.8895(3)	403.792(4)	1.90
369.45	8.2817(6)	5.8889(5)	403.908(9)	1.95
371.31	8.2834(2)	5.8881(8)	404.017(8)	1.98
373.06	8.2850(0)	5.8873(7)	404.115(9)	2.01
375.03	8.2867(8)	5.8864(1)	404.224(1)	2.03
376.95	8.2888(1)	5.8853(8)	404.351(9)	2.06
378.86	8.2908(6)	5.8843(0)	404.476(7)	2.07
380.79	8.2928(5)	5.8831(1)	404.589(8)	2.07
382.55	8.2944(3)	5.8820(7)	404.672(1)	2.03
384.50	8.2959(3)	5.8809(7)	404.742(4)	1.99
386.28	8.2972(6)	5.8801(3)	404.814(6)	1.96
388.21	8.2984(5)	5.8794(2)	404.882(3)	1.92
390.08	8.2995(1)	5.8788(5)	404.946(3)	1.91
391.97	8.3004(8)	5.8784(3)	405.011(5)	1.94
393.74	8.3013(8)	5.8780(8)	405.075(1)	1.97
395.58	8.3021(7)	5.8778(5)	405.136(4)	2.01

Table S3. Evolution of refined lattice parameters in Cs_{0.87}MA_{0.13}PbBr₃.

Tamananatura	_	_	Cell	
1 emperature	$(\hat{\lambda})$	$\begin{pmatrix} c \\ (\lambda) \end{pmatrix}$	volume	R Bragg
(K)	(A)	(A)	(Å ³)	
311.08	8.2728(5)	5.8932(0)	403.330(2)	1.76
313.07	8.2732(1)	5.8925(2)	403.319(1)	1.76
315.25	8.2742(5)	5.8922(4)	403.401(6)	1.72
317.25	8.2752(3)	5.8918(1)	403.467(8)	1.77
319.32	8.2763(5)	5.8914(3)	403.550(8)	1.76
321.06	8.2774(5)	5.8910(1)	403.629(6)	1.82
322.94	8.2782(7)	5.8904(6)	403.671(2)	1.83
324.89	8.2795(8)	5.8899(2)	403.762(8)	1.88
326.88	8.2810(0)	5.8893(0)	403.858(6)	1.89
328.70	8.2823(3)	5.8885(6)	403.937(2)	1.95
330.66	8.2840(6)	5.8877(3)	404.048(8)	1.97
332.60	8.2860(5)	5.8866(1)	404.166(2)	2.00
334.56	8.2883(3)	5.8853(3)	404.301(3)	2.10
336.39	8.2909(2)	5.8836(9)	404.441(2)	2.20
338.18	8.2934(2)	5.8820(0)	404.568(3)	2.24
340.25	8.2959(7)	5.8801(3)	404.688(9)	2.27
342.03	8.2982(7)	5.8784(9)	404.793(6)	2.21
343.89	8.3004(9)	5.8770(1)	404.915(0)	2.14
345.95	8.3026(9)	5.8753(4)	405.014(2)	2.08
347.77	8.3050(2)	5.8735(6)	405.118(7)	2.07
349.75	8.3060(9)	5.8735(0)	405.218(8)	2.14
351.63	8.3065(7)	5.8736(2)	405.275(2)	2.19
353.57	8.3071(7)	5.8739(6)	405.356(4)	2.23
355.50	8.3074(9)	5.8744(5)	405.421(6)	2.30
357.39	8.3082(7)	5.8747(6)	405.519(2)	2.26
359.36	8.3085(5)	5.8752(4)	405.579(5)	2.30

Table S4. Evolution of refined lattice parameters in Cs_{0.75}MA_{0.25}PbBr₃.

T			Cell	
Temperature	$(\hat{\lambda})$	$\begin{pmatrix} c \\ \begin{pmatrix} \lambda \\ \end{pmatrix} \end{pmatrix}$	volume	R Bragg
(K)	(A)	(A)	(Å ³)	00
257.80	8.2643(5)	5.8902(7)	402.302(2)	1.48
259.79	8.2654(0)	5.8902(6)	402.403(6)	1.54
261.73	8.2664(2)	5.8902(6)	402.502(4)	1.53
263.56	8.2673(7)	5.8901(5)	402.588(7)	1.52
265.44	8.2684(5)	5.8900(6)	402.687(8)	1.51
267.27	8.2695(9)	5.8898(4)	402.783(2)	1.54
269.05	8.2706(4)	5.8896(2)	402.870(8)	1.53
271.00	8.2718(5)	5.8894(1)	402.973(7)	1.55
272.89	8.2732(1)	5.8891(0)	403.085(0)	1.52
274.84	8.2744(9)	5.8887(2)	403.184(3)	1.54
276.75	8.2757(8)	5.8883(2)	403.282(6)	1.54
278.61	8.2771(9)	5.8878(6)	403.388(4)	1.53
280.53	8.2787(0)	5.8872(9)	403.496(3)	1.55
282.50	8.2802(4)	5.8866(6)	403.603(6)	1.53
284.36	8.2818(7)	5.8859(5)	403.713(9)	1.54
286.28	8.2836(2)	5.8852(2)	403.833(9)	1.57
288.21	8.2856(7)	5.8843(2)	403.972(2)	1.58
290.22	8.2880(1)	5.8831(0)	404.116(7)	1.61
292.01	8.2909(4)	5.8813(6)	404.282(6)	1.66
293.79	8.2953(2)	5.8785(5)	404.516(5)	1.68
295.80	8.2991(5)	5.8756(0)	404.686(7)	1.71
297.70	8.3025(2)	5.8726(5)	404.812(0)	1.71
299.63	8.3038(5)	5.8721(1)	404.905(1)	1.72
301.54	8.3046(0)	5.8726(6)	405.016(2)	1.81
303.30	8.3052(6)	5.8732(3)	405.119(4)	1.86
305.25	8.3058(1)	5.8732(6)	405.175(2)	1.91
307.09	8.3065(6)	5.8738(2)	405.287(1)	1.94
309.03	8.3071(3)	5.8743(9)	405.381(9)	2.00

Table S5. Evolution of refined lattice parameters in Cs_{0.63}MA_{0.37}PbBr₃.

Tomporatura	C	C	Cell	
(K)	α (Å)	$\begin{pmatrix} c \\ (\dot{\Delta}) \end{pmatrix}$	volume	$R_{ m Bragg}$
(K)	(A)	(A)	$(Å^3)$	
234.05	8.2748(8)	5.8879(8)	403.171(4)	1.60
236.02	8.2759(7)	5.8876(9)	403.257(5)	1.62
238.03	8.2771(1)	5.8872(8)	403.340(6)	1.61
240.06	8.2785(2)	5.8867(8)	403.443(9)	1.58
242.09	8.2799(7)	5.8863(2)	403.553(9)	1.54
244.08	8.2814(9)	5.8858(0)	403.666(5)	1.53
245.90	8.2830(5)	5.8852(0)	403.777(0)	1.51
247.81	8.2846(8)	5.8844(6)	403.884(7)	1.50
249.69	8.2866(0)	5.8837(0)	404.020(9)	1.51
251.61	8.2887(5)	5.8827(6)	404.164(8)	1.52
253.50	8.2912(2)	5.8816(0)	404.326(8)	1.53
255.38	8.2945(9)	5.8800(0)	404.545(9)	1.58
257.19	8.2982(8)	5.8777(6)	404.751(4)	1.63
258.92	8.3017(7)	5.8749(1)	404.895(0)	1.69
260.91	8.3047(4)	5.8727(8)	405.038(2)	1.80
262.90	8.3054(9)	5.8731(5)	405.136(5)	1.97
264.70	8.3059(2)	5.8736(7)	405.214(8)	2.07
266.56	8.3064(4)	5.8738(6)	405.278(4)	2.15
268.62	8.3074(1)	5.8742(6)	405.400(1)	2.22
270.52	8.3077(5)	5.8746(9)	405.463(0)	2.26
272.45	8.3084(1)	5.8753(4)	405.573(3)	2.32
274.35	8.3089(5)	5.8755(1)	405.637(1)	2.31
276.20	8.3097(5)	5.8761(1)	405.756(8)	2.33
278.20	8.3106(6)	5.8762(4)	405.854(4)	2.32
280.15	8.3109(3)	5.8769(0)	405.927(3)	2.41
282.00	8.3115(5)	5.8775(0)	406.029(2)	2.38
283.48	8.3120(4)	5.8776(6)	406.087(6)	2.39
283.46	8.3124(8)	5.8781(0)	406.160(8)	2.35
283.20	8.3125(3)	5.8780(8)	406.164(8)	2.36
283.12	8.3126(1)	5.8781(3)	406.176(4)	2.38
283.04	8.3126(7)	5.8781(7)	406.184(8)	2.37
282.97	8.3128(5)	5.8782(7)	406.208(9)	2.36

Table S6. Evolution of refined lattice parameters in Cs_{0.5}MA_{0.5}PbBr₃.

Tamananatan	_	_	Cell	
Temperature (V)	$(\hat{\lambda})$	$\begin{pmatrix} c \\ \begin{pmatrix} \lambda \end{pmatrix} \end{pmatrix}$	volume	R Bragg
(K)	(A)	(A)	(Å ³)	
198.11	8.2804(4)	5.8830(1)	403.372(6)	1.81
200.09	8.2814(8)	5.8827(8)	403.458(1)	1.79
202.25	8.2827(7)	5.8823(8)	403.556(3)	1.79
204.18	8.2840(7)	5.8820(5)	403.661(1)	1.81
206.17	8.2854(7)	5.8816(7)	403.771(2)	1.77
207.99	8.2868(7)	5.8812(6)	403.879(2)	1.78
209.87	8.2883(8)	5.8808(3)	403.996(7)	1.81
211.80	8.2898(4)	5.8803(2)	404.104(5)	1.82
213.59	8.2915(7)	5.8796(6)	404.227(1)	1.81
215.38	8.2935(2)	5.8789(3)	404.366(9)	1.81
217.37	8.2959(8)	5.8777(2)	404.523(5)	1.80
219.38	8.2995(1)	5.8755(1)	404.716(1)	1.81
221.08	8.3034(2)	5.8722(5)	404.872(8)	1.90
222.90	8.3043(7)	5.8727(7)	405.001(2)	2.03
224.83	8.3052(0)	5.8728(4)	405.086(8)	2.11
226.69	8.3060(8)	5.8733(6)	405.208(6)	2.17
228.52	8.3068(1)	5.8737(3)	405.305(8)	2.21
230.30	8.3073(3)	5.8742(9)	405.394(3)	2.23
232.19	8.3081(1)	5.8749(4)	405.516(0)	2.23
234.00	8.3087(6)	5.8757(4)	405.634(8)	2.20
235.78	8.3095(0)	5.8757(5)	405.707(4)	2.25
237.72	8.3102(8)	5.8763(1)	405.822(6)	2.20
239.61	8.3109(0)	5.8767(0)	405.909(9)	2.23
241.41	8.3115(8)	5.8772(1)	406.011(6)	2.21
243.30	8.3122(7)	5.8778(6)	406.124(4)	2.23
245.20	8.3130(9)	5.8785(8)	406.253(9)	2.22
247.23	8.3137(1)	5.8791(7)	406.355(1)	2.22

 Table S7. Evolution of refined lattice parameters in Cs_{0.37}MA_{0.63}PbBr₃.

Tomporatura	~	2	Cell	
(V)	$(\mathring{\lambda})$	$\begin{pmatrix} c \\ (\lambda) \end{pmatrix}$	volume	$R_{ m Bragg}$
(K)	(A)	(A)	$(Å^3)$	
176.04	8.2987(0)	5.8759(2)	404.665(4)	1.09
177.97	8.2995(5)	5.8761(5)	404.764(0)	1.07
180.10	8.3005(4)	5.8762(7)	404.869(0)	1.11
182.09	8.3015(7)	5.8765(8)	404.990(7)	1.08
184.08	8.3025(7)	5.8766(2)	405.090(9)	1.08
185.89	8.3037(7)	5.8770(8)	405.239(7)	1.08
187.80	8.3047(6)	5.8770(9)	405.336(6)	1.10
189.67	8.3059(8)	5.8772(1)	405.464(5)	1.14
191.58	8.3068(3)	5.8776(9)	405.580(8)	1.13
193.39	8.3080(3)	5.8775(4)	405.687(4)	1.15
195.15	8.3092(0)	5.8777(6)	405.816(3)	1.14
197.08	8.3102(3)	5.8780(3)	405.935(7)	1.14
198.90	8.3111(9)	5.8785(3)	406.064(0)	1.17
200.78	8.3117(5)	5.8791(0)	406.159(1)	1.16
202.60	8.3128(2)	5.8794(4)	406.287(1)	1.17
204.37	8.3136(4)	5.8798(8)	406.396(9)	1.20
206.32	8.3145(1)	5.8803(4)	406.514(6)	1.18
208.23	8.3155(1)	5.8807(6)	406.640(4)	1.23
210.12	8.3162(9)	5.8812(0)	406.747(7)	1.21
212.03	8.3170(5)	5.8818(6)	406.867(3)	1.23
213.97	8.3175(9)	5.8827(3)	406.980(9)	1.23
215.82	8.3186(3)	5.8829(4)	407.097(2)	1.21
217.73	8.3190(8)	5.8838(4)	407.203(5)	1.20
219.62	8.3202(1)	5.8839(2)	407.319(5)	1.23
221.51	8.3207(6)	5.8847(4)	407.429(7)	1.20
223.39	8.3217(7)	5.8849(0)	407.540(9)	1.21
225.23	8.3221(1)	5.8858(0)	407.635(4)	1.24

 Table S8. Evolution of refined lattice parameters in Cs0.25MA0.75PbBr3.

Temperature (K)	a (Å)	с (Å)	Cell volume (Å ³)	R _{Bragg}
151.03	5.8774(9)		203.036(7)	2.54
152.85	5.8779(2)		203.081(3)	2.55
155.05	5.8784(1)		203.133(0)	2.51
157.16	5.8790(3)		203.197(0)	2.50
159.07	5.8795(8)		203.253(8)	2.50
161.01	5.8800(6)		203.303(6)	2.56

Table S9. Evolution of refined lattice parameters in Cs_{0.13}MA_{0.87}PbBr₃.

·			~ *	
Temperature	а	С	Cell	D
(K)	(Å)	(Å)	volume	R Bragg
(11)	(11)	()	(A^3)	
169.80	8.3306(4)	5.9545(7)	413.244(7)	3.44
171.16	8.3308(4)	5.9544(8)	413.257(4)	3.46
172.46	8.3313(3)	5.9544(4)	413.303(8)	3.67
173.75	8.3318(4)	5.9542(3)	413.340(1)	3.50
175.19	8.3324(6)	5.9540(1)	413.385(8)	3.47
176.60	8.3331(7)	5.9538(5)	413.445(8)	3.48
177.77	8.3339(2)	5.9538(0)	413.516(2)	3.43
180.09	8.3346(0)	5.9536(0)	413.569(6)	3.29
181.37	8.3356(1)	5.9531(5)	413.639(5)	3.22
182.56	8.3361(2)	5.9532(4)	413.695(5)	3.65
183.77	8.3369(1)	5.9530(7)	413.762(4)	3.68
185.20	8.3376(2)	5.9527(3)	413.809(9)	3.57
186.38	8.3382(7)	5.9526(0)	413.864(2)	3.58
187.68	8.3389(5)	5.9523(0)	413.911(6)	3.60
189.09	8.3395(9)	5.9519(7)	413.951(8)	3.91
190.98	8.3405(3)	5.9515(4)	414.016(1)	3.67
192.36	8.3414(4)	5.9512(3)	414.084(4)	3.56
193.88	8.3423(3)	5.9508(4)	414.145(7)	3.71
196.57	8.3432(3)	5.9503(6)	414.201(1)	3.56
198.07	8.3446(2)	5.9497(0)	414.293(4)	3.65
199.40	8.3457(2)	5.9493(7)	414.379(8)	3.67
200.79	8.3465(7)	5.9489(4)	414.434(3)	3.84
202.08	8.3474(9)	5.9486(0)	414.501(7)	3.98
203 29	8 3482(4)	5 9481(9)	414 548(1)	3.85
205.06	8 3492(4)	5.9477(3)	414 615(4)	3.85
205.00	8 3500(3)	5 9468(0)	414 628(8)	3.89
200.10	8 3512(8)	5.9463(2)	414 719(8)	3.81
210.87	8 3526(6)	5.9403(2) 5.9458(1)	414.719(0)	3.01
210.87	8.3520(0) 8.3547(0)	5.9430(1)	414.020(9)	3.83
212.08	8.3347(9) 8.3560(3)	5.9447(0) 5.9441(0)	414.939(9)	3.65
214.03	8.3500(3)	5.9441(0) 5.0422(7)	415.030(1)	3.00
215.45	8.3309(2)	5.9433(7)	415.075(3)	2.74
210.05	8.3360(1)	5.9420(2)	413.144(1)	2.75
217.91	8.3390(3)	5.9422(4)	413.200(7)	3.82 2.95
219.44	8.3001(0)	5.9415(6)	415.208(9)	3.85
220.92	8.3613(6)	5.9408(0)	415.334(7)	3.79
222.29	8.3626(9)	5.9398(0)	415.397(2)	3.59
224.06	8.3640(1)	5.9389(4)	415.468(3)	3.43
225.69	8.3654(3)	5.9377(3)	415.525(4)	3.17
229.20	8.3679(3)	5.9359(5)	415.647(8)	3.04
231.34	8.3705(8)	5.9332(6)	415.724(1)	2.66
232.90	8.3728(7)	5.9311(9)	415.805(4)	2.39
234.70	8.3751(1)	5.9291(1)	415.881(7)	2.53
236.18	8.3778(1)	5.9268(4)	415.991(5)	2.65
237.49	8.3798(1)	5.9254(9)	416.094(9)	2.60

Table S10. Evolution of refined lattice parameters in MAPbBr₃.

238.92	8.3801(2)	5.9258(0)	416.147(9)	2.94
240.27	8.3804(1)	5.9261(0)	416.197(7)	2.97
242.38	8.3810(6)	5.9265(3)	416.292(2)	2.90
243.84	8.3816(8)	5.9269(6)	416.384(4)	3.04
245.23	8.3822(9)	5.9271(2)	416.456(3)	3.00
246.36	8.3825(7)	5.9276(8)	416.522(7)	3.11
248.10	8.3831(0)	5.9279(4)	416.593(8)	3.00
249.57	8.3837(5)	5.9282(5)	416.681(0)	3.05
250.99	8.3840(6)	5.9287(1)	416.743(1)	3.01
252.37	8.3845(3)	5.9289(6)	416.808(0)	3.06
253.77	8.3850(9)	5.9293(9)	416.894(0)	2.89
255.20	8.3854(5)	5.9296(6)	416.948(7)	3.02
256.70	8.3859(6)	5.9299(6)	417.020(9)	3.17
258.08	8.3864(5)	5.9303(4)	417.095(8)	2.92
259.50	8.3871(7)	5.9305(2)	417.179(6)	2.84
262.63	8.3874(1)	5.9311(1)	417.245(2)	3.00
265.18	8.3887(5)	5.9318(0)	417.427(5)	2.96
268.10	8.3897(1)	5.9323(8)	417.563(2)	3.04
273.47	8.3913(9)	5.9335(3)	417.812(0)	2.91
274.79	8.3926(7)	5.9345(0)	418.007(5)	3.19
277.17	8.3930(7)	5.9349(6)	418.080(2)	3.27
280.21	8.3940(0)	5.9355(9)	418.217(5)	3.07
281.60	8.3950(2)	5.9362(6)	418.366(3)	3.43
283.13	8.3955(7)	5.9365(8)	418.443(2)	3.35
284.51	8.3959(6)	5.9369(2)	418.505(6)	3.41
285.79	8.3965(3)	5.9372(5)	418.585(8)	3.40
287.09	8.3969(3)	5.9376(1)	418.651(6)	3.43
288.61	8.3973(3)	5.9378(5)	418.708(6)	3.49
290.27	8.3976(9)	5.9382(2)	418.770(3)	3.59
292.56	8.3985(9)	5.9385(9)	418.886(4)	3.54
295.56	8.3993(4)	5.9390(3)	418.992(4)	3.55
296.83	8.4001(0)	5.9397(1)	419.115(7)	3.71
297.93	8.4003(9)	5.9400(4)	419.168(8)	3.66
299.32	8.4007(7)	5.9402(8)	419.223(1)	3.73
300.58	8.4012(1)	5.9405(9)	419.288(9)	3.58
301.69	8.4017(3)	5.9407(9)	419.354(5)	3.58
301.73	8.4018(1)	5.9409(2)	419.372(7)	3.53

Temperature	а	b	С	Cell	
(K)	(Å)	(Å)	(Å)	volume (Å ³)	R _{Bragg}
290	7.895(7)	11.232(0)	7.894(4)	700.12(4)	5.94
295	7.898(1)	11.235(9)	7.897(3)	700.83(8)	4.70
300	7.900(1)	11.238(6)	7.899(7)	701.39(5)	4.13
305	7.902(3)	11.240(9)	7.902(1)	701.95(1)	3.64
310	7.904(5)	11.242(9)	7.904(4)	702.47(0)	3.22
315	7.906(8)		5.622(1)	351.48(9)	2.99
320	7.909(6)		5.622(0)	351.73(6)	2.71
325	7.913(8)		5.619(5)	351.96(7)	2.43
330	7.916(3)		5.618(9)	352.15(5)	2.38
335	7.918(5)		5.619(1)	352.35(7)	2.17
340	7.920(0)		5.619(3)	352.51(3)	2.11
345	7.921(7)		5.619(8)	352.68(9)	1.88
350	7.923(2)		5.620(3)	352.85(9)	1.77
355	7.924(5)		5.620(8)	353.01(1)	1.67
360	7.926(0)		5.621(2)	353.16(9)	1.57

 Table S11. Evolution of refined lattice parameters in CsPbCl3.

Temperature	а	h	C	Cell	
(K)	(Å)	(Å)	(Å)	volume	$R_{ m Bragg}$
(11)	()	()	()	(A ³)	
100	7.870(6)	11.179(8)	7.784(0)	684.94(0)	0.07
105	7.871(1)	11.180(1)	7.784(9)	685.07(9)	0.11
110	7.870(8)	11.179(5)	7.788(1)	685.29(8)	0.04
115	7.870(8)	11.179(9)	7.791(8)	685.64(6)	0.03
120	7.870(3)	11.180(2)	7.793(4)	685.76(6)	0.08
125	7.869(6)	11.180(4)	7.797(2)	686.04(8)	0.08
130	7.869(1)	11.180(9)	7.798(9)	686.17(9)	0.07
135	7.869(5)	11.180(6)	7.802(6)	686.53(1)	0.05
140	7.868(5)	11.181(7)	7.805(7)	686.78(0)	0.04
145	7.868(7)	11.183(7)	7.805(6)	686.91(0)	0.13
150	7.868(1)	11.183(7)	7.806(6)	686.94(7)	0.09
155	7.869(1)	11.185(1)	7.809(0)	687.32(8)	0.11
160	7.868(8)	11.186(0)	7.811(6)	687.59(2)	0.03
165	7.867(7)	11.186(7)	7.814(9)	687.82(9)	0.03
170	7.868(2)	11.188(7)	7.816(8)	688.16(1)	0.09
175	7.868(9)	11.188(5)	7.819(3)	688.42(8)	0.08
180	7.869(9)	11.188(7)	7.822(9)	688.84(3)	0.04
185	7.869(8)	11.189(9)	7.827(0)	689.27(6)	0.07
190	7.870(5)	11.190(2)	7.830(0)	689.62(3)	0.04
195	7.871(9)	11.191(2)	7.832(4)	690.01(6)	0.04
200	7.872(5)	11.192(0)	7.834(6)	690.30(4)	0.09
205	7.873(8)	11.192(4)	7.837(5)	690.70(1)	0.09
210	7.875(1)	11.192(1)	7.841(3)	691.13(2)	0.03
215	7.876(4)	11.193(2)	7.844(2)	691.57(4)	0.03
220	7.878(0)	11.195(3)	7.846(0)	692.00(3)	0.03
225	7.873(8)		5.598(6)	347.09(5)	0.65
230	7.876(0)		5.599(9)	347.37(4)	0.62
235	7.878(7)		5.600(2)	347.63(3)	0.66
240	7.880(9)		5.601(4)	347.90(4)	0.62
245	7.883(2)		5.602(5)	348.17(0)	0.67
250	7.885(7)		5.603(5)	348.45(7)	0.68
255	7.887(7)		5.604(4)	348.69(3)	0.57
260	7.889(7)		5.605(7)	348.95(3)	0.63
265	7.891(3)		5.606(5)	349.13(8)	0.64
270	7.894(1)		5.607(6)	349.45(9)	0.67
275	7.897(3)		5.609(3)	349.84(2)	0.69
280	7.900(8)		5.610(4)	350.21(6)	0.76
285	7.903(4)		5.611(8)	350.53(6)	0.74
290	7.905(8)		5.612(7)	350.81(3)	0.75
295	7.907(9)		5.613(8)	351.06(2)	0.72
300	7.909(5)		5.614(7)	351.26(5)	0.74
305	7.911(1)		5.615(9)	351.48(1)	0.70
310	7.913(0)		5.617(0)	351.72(3)	0.67
315	7.914(9)		5.618(4)	351.97(4)	0.69

 Table S12. Evolution of refined lattice parameters in Cs_{0.87}MA_{0.13}PbCl₃.

320	7.916(5)	5.619(6)	352.19(2)	0.74
325	7.918(1)	5.620(9)	352.40(9)	0.68
330	7.919(7)	5.622(1)	352.63(9)	0.64
335	7.921(2)	5.623(4)	352.85(3)	0.67
340	7.923(1)	5.625(1)	353.12(0)	0.63

Temperature (K)	a (Å)	b (Å)	c (Å)	Cell volume	R _{Bragg}
100	7.000(0)	11.100(7)		$\frac{(A^3)}{(A^3)}$	1.07
100	7.900(9)	11.188(5)	7.809(4)	690.35(5)	1.37
105	7.900(0)	11.189(7)	7.810(0)	690.40(3)	1.36
110	7.899(8)	11.190(2)	7.811(3)	690.54(0)	1.41
115	/.899(0)	11.190(0)	7.813(2)	690.62(1)	1.39
120	/.898(4)	11.190(8)	/.815(0)	690.76(9)	1.40
125	7.898(1)	11.191(3)	7.818(2)	691.06(2)	1.41
130	7.89/(7)	11.191(3)	7.820(0)	691.18(1)	1.42
135	7.896(8)	11.191(0)	7.823(6)	691.41(1)	1.38
140	7.896(8)	11.191(6)	7.826(4)	691.68(3)	1.44
145	7.896(2)	11.191(7)	7.829(6)	691.92(8)	1.42
150	7.894(6)	11.190(0)	7.835(2)	692.17(2)	1.41
155	/.894(0)	11.189(7)	/.840(0)	692.53(2)	1.41
160	7.894(2)	11.189(6)	7.843(9)	692.87(8)	1.47
165	7.894(2)	11.189(3)	7.847(5)	693.18(6)	1.48
170	7.894(8)	11.189(3)	7.850(9)	693.53(9)	1.51
175	7.895(4)	11.190(1)	7.853(6)	693.87(6)	1.52
180	7.896(2)	11.190(1)	7.857(6)	694.30(9)	1.56
185	7.897(1)	11.190(5)	7.860(0)	694.61(9)	1.59
190	7.898(5)	11.191(3)	7.862(8)	695.03(6)	1.65
195	7.899(8)	11.192(6)	7.865(0)	695.43(0)	1.64
200	7.901(9)	11.194(0)	7.867(5)	695.93(1)	1.68
205	7.889(1)		5.597(2)	348.36(6)	2.01
210	7.891(1)		5.597(9)	348.58(5)	2.07
215	7.893(1)		5.598(5)	348.79(9)	2.06
220	7.894(8)		5.599(5)	349.01(3)	2.08
225	7.896(6)		5.600(6)	349.23(7)	2.12
230	7.898(3)		5.601(7)	349.46(0)	2.15
235	7.900(2)		5.602(8)	349.69(5)	2.13
240	7.902(2)		5.603(8)	349.93(5)	2.22
245	7.904(0)		5.604(9)	350.16(3)	2.19
250	7.905(6)		5.605(7)	350.35(8)	2.22
255	7.906(9)		5.606(6)	350.53(2)	2.22
260	7.908(5)		5.607(6)	350.72(8)	2.22
265	7.909(7)		5.608(4)	350.88(3)	2.20
270	7.911(0)		5.609(2)	351.05(6)	2.21
275	7.912(3)		5.610(1)	351.22(2)	2.21
280	7.913(8)		5.611(1)	351.42(2)	2.22
285	7.915(0)		5.611(9)	351.57(6)	2.24
290	7.916(4)		5.612(8)	351.75(5)	2.20
295	7.917(3)		5.613(6)	351.88(9)	2.22
300	7.918(8)		5.614(5)	352.07(7)	2.22
305	7.919(9)		5.615(4)	352.22(7)	2.18
310	7.920(6)		5.616(1)	352.33(2)	2.21

Table S13. Evolution of refined lattice parameters in Cs0.75MA0.25PbCl3.

Temperature	a	С	Cell	$R_{\rm Bragg}$
(K)	(Å)	(Å)	$(Å^3)$	
100	7.887(1)	5.632(8)	350.40(7)	3.03
110	7.888(8)	5.632(4)	350.52(7)	2.99
120	7.889(9)	5.629(6)	350.45(1)	2.93
130	7.892(8)	5.627(9)	350.60(6)	2.91
140	7.896(3)	5.627(3)	350.87(6)	2.93
150	7.899(2)	5.624(6)	350.96(8)	2.91
155	7.901(8)	5.625(0)	351.21(9)	2.94
160	7.903(3)	5.623(1)	351.24(3)	2.95
165	7.906(4)	5.623(5)	351.53(6)	2.94
170	7.908(2)	5.621(8)	351.59(2)	2.97
175	7.910(4)	5.621(5)	351.76(4)	2.99
180	7.913(9)	5.622(2)	352.12(1)	2.96
185	7.915(7)	5.620(6)	352.18(2)	3.01
190	7.919(2)	5.621(3)	352.54(2)	3.00
195	7.921(5)	5.620(3)	352.67(8)	3.01
200	7.924(4)	5.620(8)	352.96(5)	2.98
205	7.928(1)	5.620(3)	353.27(3)	2.79
210	7.931(8)	5.620(8)	353.62(6)	2.52
215	7.934(4)	5.622(3)	353.95(5)	2.51
220	7.935(1)	5.622(3)	354.02(6)	2.52
225	7.937(4)	5.623(9)	354.32(4)	2.54
230	7.937(5)	5.623(9)	354.33(7)	2.69
240	7.940(8)	5.626(3)	354.78(1)	2.73
250	7.943(7)	5.627(8)	355.12(7)	2.70
260	7.947(1)	5.630(0)	355.58(4)	2.56
270	7.951(1)	5.632(5)	356.09(4)	2.40
280	7.953(9)	5.634(6)	356.47(3)	2.39
290	7.955(2)	5.636(6)	356.72(0)	2.45

Table S14. Evolution of refined lattice parameters in Cs_{0.63}MA_{0.37}PbCl₃.

Temperature	a	с	Cell	<i>R</i> _D
(K)	(Å)	(Å)	(Å3)	N Bragg
100	7.896(0)	5.607(8)	349.62(8)	2.93
105	7.896(5)	5.608(4)	349.71(8)	3.00
110	7.897(4)	5.609(2)	349.84(2)	2.97
115	7.898(2)	5.610(0)	349.96(5)	2.94
120	7.899(4)	5.611(0)	350.13(8)	3.02
125	7.900(4)	5.611(7)	350.26(5)	3.01
130	7.901(8)	5.612(9)	350.46(8)	2.99
135	7.903(2)	5.614(0)	350.66(4)	3.00
140	7.904(6)	5.615(0)	350.85(1)	2.96
145	7.906(4)	5.616(7)	351.11(5)	2.96
150	7.908(0)	5.617(6)	351.31(1)	3.05
155	7.909(7)	5.618(7)	351.53(1)	2.96
160	7.911(2)	5.619(9)	351.74(1)	3.12
165	7.912(9)	5.620(9)	351.95(1)	3.07
170	7.914(7)	5.621(8)	352.16(7)	3.16
175	7.916(3)	5.623(0)	352.38(2)	3.15
180	7.917(8)	5.623(8)	352.57(0)	3.08
185	7.919(6)	5.624(9)	352.80(1)	3.25
190	7.921(1)	5.625(9)	352.99(9)	3.23
195	7.922(8)	5.627(2)	353.23(2)	3.30
200	7.924(7)	5.628(4)	353.47(5)	3.18
205	7.926(3)	5.629(6)	353.69(1)	3.30
210	7.928(2)	5.630(8)	353.93(2)	3.23
215	7.929(9)	5.632(2)	354.17(3)	3.28
220	7.931(3)	5.633(3)	354.37(1)	3.29
225	7.932(6)	5.634(5)	354.56(9)	3.22
230	7.934(2)	5.635(6)	354.77(6)	3.28
235	7.935(8)	5.637(0)	355.01(0)	3.35
240	7.937(1)	5.638(0)	355.18(7)	3.33
245	7.938(5)	5.639(2)	355.38(8)	3.37
250	7.940(2)	5.640(4)	355.61(9)	3.39
255	7.941(8)	5.641(5)	355.82(7)	3.45
260	7.943(4)	5.642(6)	356.04(1)	3.40
265	7.945(0)	5.643(8)	356.25(6)	3.58
270	7.946(6)	5.644(7)	356.46(6)	3.48
275	7.948(1)	5.645(8)	356.66(6)	3.65
280	7.949(6)	5.646(9)	356.87(2)	3.65
285	7.951(2)	5.648(0)	357.07(9)	3.77
290	7.952(4)	5.648(5)	357.22(0)	3.63

 Table S15. Evolution of refined lattice parameters in Cs_{0.5}MA_{0.5}PbCl₃.

			Cell	
I emperature	a	$\begin{pmatrix} C \\ \begin{pmatrix} A \\ \end{pmatrix} \end{pmatrix}$	volume	$R_{\rm Bragg}$
(K)	(A)	(A)	(Å ³)	
100	7.948(2)	5.626(6)	355.45(9)	4.01
105	7.949(8)	5.626(8)	355.61(9)	4.01
110	7.950(2)	5.626(9)	355.65(5)	3.95
115	7.952(2)	5.627(6)	355.88(0)	4.32
120	7.954(0)	5.628(2)	356.08(3)	4.25
125	7.955(5)	5.628(8)	356.25(3)	4.24
130	7.956(9)	5.629(4)	356.42(3)	4.14
135	7.958(2)	5.629(9)	356.57(0)	4.17
140	7.960(2)	5.630(8)	356.79(6)	4.18
145	7.961(8)	5.631(8)	357.00(8)	4.06
150	7.962(7)	5.632(3)	357.11(6)	4.23
155	7.965(0)	5.633(5)	357.39(9)	4.25
160	7.966(9)	5.634(9)	357.66(0)	4.25
165	7.968(6)	5.635(8)	357.87(6)	4.28
170	7.970(6)	5.636(9)	358.12(1)	4.28
175	7.972(2)	5.638(0)	358.33(9)	4.29
180	7.974(2)	5.639(1)	358.58(8)	4.32
185	7.976(1)	5.640(2)	358.82(3)	4.23
190	7.977(8)	5.641(3)	359.04(6)	4.40
195	7.979(7)	5.642(3)	359.28(0)	4.57
200	7.981(1)	5.643(2)	359.46(6)	4.53
205	7.982(8)	5.644(3)	359.69(3)	4.66
210	7.984(4)	5.645(4)	359.90(4)	4.73
215	7.986(0)	5.646(6)	360.12(4)	4.67
220	7.987(8)	5.647(5)	360.34(6)	4.77
225	7.989(3)	5.649(1)	360.58(1)	4.76
230	7.991(3)	5.649(9)	360.81(3)	5.09
235	7.993(6)	5.651(4)	361.11(6)	5.14
240	7.995(9)	5.652(7)	361.41(1)	4.88
245	7.997(5)	5.653(5)	361.61(1)	4.94
250	7.999(2)	5.654(4)	361.81(3)	5.02
255	8.000(4)	5.655(0)	361.96(5)	5.10
260	8.002(1)	5.655(9)	362.17(4	5.20
265	8.004(1)	5.657(1)	362.43(0)	5.20
270	8.005(7)	5.658(2)	362.64(4)	5.23
275	8.007(6)	5.659(2)	362.88(3)	5.62
280	8.008(9)	5.659(8)	363.04(0)	5.59
285	8.010(7)	5.660(7)	363.25(9)	5.66
290	8.012(1)	5.661(3)	363.42(1)	5.43

 Table S16. Evolution of refined lattice parameters in Cs_{0.37}MA_{0.63}PbCl₃.

Temperature	а	С	Cell	
(K)	(Å)	(Å)	volume $(Å^3)$	R _{Bragg}
100	7.943(1)	5.626(0)	354.96(2)	2.20
105	7.944(0)	5.626(3)	355.06(8)	2.20
110	7.944(6)	5.627(2)	355.17(3)	2.24
115	7.945(2)	5.627(7)	355.26(3)	2.23
120	7.946(2)	5.628(5)	355.40(6)	2.22
125	7.947(0)	5.629(2)	355.51(6)	2.23
130	7.948(4)	5.630(2)	355.70(0)	2.21
135	7.949(5)	5.630(7)	355.83(3)	2.18
140	7.950(8)	5.631(5)	356.00(4)	2.21
145	7.952(6)	5.632(2)	356.20(7)	2.16
150	7.953(6)	5.633(3)	356.37(0)	2.19
155	7.955(3)	5.634(1)	356.56(4)	2.15
160	7.956(6)	5.635(1)	356.75(3)	2.17
165	7.958(3)	5.636(1)	356.96(2)	2.18
170	7.959(9)	5.637(1)	357.17(9)	2.17
175	7.961(6)	5.638(2)	357.40(0)	2.14
180	7.963(5)	5.639(4)	357.64(4)	2.13
185	7.965(1)	5.640(6)	357.86(3)	2.19
190	7.967(1)	5.641(7)	358.11(4)	2.15
195	7.968(7)	5.642(7)	358.31(8)	2.16
200	7.970(4)	5.643(7)	358.53(9)	2.18
205	7.972(3)	5.645(0)	358.78(8)	2.20
210	7.973(9)	5.646(0)	358.99(7)	2.21
215	7.975(8)	5.647(2)	359.24(4)	2.25
220	7.977(7)	5.648(1)	359.46(8)	2.25
225	7.979(4)	5.649(1)	359.68(8)	2.26
230	7.981(2)	5.650(1)	359.91(0)	2.31
235	7.983(1)	5.651(0)	360.14(2)	2.31
240	7.984(8)	5.651(7)	360.34(6)	2.32
245	7.986(5)	5.652(6)	360.55(4)	2.36
250	7.988(4)	5.653(5)	360.77(9)	2.41
255	7.990(4)	5.654(2)	361.00(5)	2.44
260	7.991(9)	5.654(8)	361.18(4)	2.41
265	7.993(7)	5.655(7)	361.40(8)	2.48
270	7.995(6)	5.656(5)	361.62(7)	2.47
275	7.997(2)	5.657(2)	361.81(3)	2.50
280	7.998(8)	5.657(8)	362.00(1)	2.52
285	8.000(9)	5.658(4)	362.22(6)	2.60
290	8.002(6)	5.659(1)	362.42(5)	2.53

Table S17. Evolution of refined lattice parameters in Cs0.25MA0.75PbCl3.

			Cell	
Temperature	a	$\begin{pmatrix} C \\ \begin{pmatrix} A \\ \end{pmatrix} \end{pmatrix}$	volume	$R_{\rm Bragg}$
(K)	(A)	(A)	(Å ³)	00
100	7.959(4)	5.649(0)	357.88(1)	4.95
105	7.959(1)	5.650(3)	357.94(0)	4.91
110	7.959(7)	5.651(3)	358.05(3)	4.88
115	7.960(4)	5.652(2)	358.17(7)	4.88
120	7.961(0)	5.652(8)	358.26(8)	4.86
125	7.962(1)	5.653(9)	358.43(5)	4.82
130	7.962(8)	5.654(6)	358.54(4)	4.80
135	7.963(7)	5.655(4)	358.67(1)	4.77
140	7.965(0)	5.656(3)	358.85(4)	4.78
145	7.965(8)	5.656(8)	358.95(7)	4.76
150	7.966(9)	5.657(3)	359.08(4)	4.71
155	7.968(0)	5.657(6)	359.20(4)	4.66
160	7.968(9)	5.657(7)	359.28(7)	4.64
165	7.970(0)	5.658(2)	359.42(0)	4.62
170	7.971(7)	5.659(2)	359.63(4)	4.60
175	7.973(4)	5.660(2)	359.85(3)	4.61
180	7.975(3)	5.661(4)	360.09(9)	4.61
185	7.977(2)	5.662(4)	360.33(5)	4.59
190	7.979(1)	5.663(5)	360.58(3)	4.58
195	7.981(0)	5.664(7)	360.82(5)	4.53
200	7.982(8)	5.665(7)	361.05(8)	4.51
205	7.984(7)	5.666(7)	361.28(9)	4.43
210	7.986(5)	5.667(8)	361.52(5)	4.16
215	7.988(3)	5.669(1)	361.76(2)	3.72
220	7.989(8)	5.670(1)	361.97(0)	3.71
225	7.991(5)	5.671(2)	362.18(7)	3.71
230	7.992(9)	5.672(2)	362.38(3)	3.71
235	7.994(5)	5.673(4)	362.60(3)	3.70
240	7.996(0)	5.674(3)	362.80(2)	3.69
245	7.997(6)	5.675(2)	363.00(5)	3.68
250	7.999(1)	5.676(2)	363.20(0)	3.66
255	8.000(5)	5.677(3)	363.40(3)	3.66
260	8.001(9)	5.678(2)	363.58(3)	3.66
265	8.003(4)	5.679(3)	363.79(0)	3.64
270	8.004(9)	5.680(1)	363.98(3)	3.62
275	8.006(4)	5.681(1)	364.17(5)	3.60
280	8.007(8)	5.681(9)	364.35(3)	3.56
285	8.009(2)	5.682(7)	364.53(1)	3.52
290	8.010(5)	5.683(2)	364.69(0)	3.51

Table S18. Evolution of refined lattice parameters in Cs_{0.13}MA_{0.87}PbCl₃.

Temperature	a	C	Cell	
(K)	(\mathring{A})	$\begin{pmatrix} c \\ (\mathring{A} \end{pmatrix}$	volume	R Bragg
(11)	(11)	(11)	(A^3)	
165.67	8.0340(6)	5.6604(4)	365.359(4)	1.36
167.23	8.0339(3)	5.6604(5)	365.348(2)	1.36
168.50	8.0332(6)	5.6608(7)	365.314(4)	1.48
170.15	8.0328(1)	5.6610(8)	365.287(0)	1.33
171.79	8.0305(2)	5.6624(3)	365.165(8)	1.26
173.40	8.0235(1)	5.6649(5)	364.690(8)	1.28
174.80	8.0194(2)	5.6669(3)	364.446(4)	1.14
176.30	8.0178(7)	5.6678(0)	364.361(5)	1.36
178.95	8.0179(8)	5.6684(4)	364.412(6)	1.72
181.51	8.0183(6)	5.6689(0)	364.476(8)	1.92
185.61	8.0195(5)	5.6698(3)	364.644(8)	2.01
192.78	8.0215(9)	5.6711(0)	364.912(0)	2.34
196.68	8.0226(9)	5.6718(9)	365.063(0)	2.44
201.99	8.0239(5)	5.6728(3)	365.238(2)	2.55
207.13	8.0258(1)	5.6740(9)	365.488(7)	2.73
211.35	8.0269(3)	5.6748(9)	365.642(2)	2.87
215.10	8.0280(9)	5.6757(7)	365.804(6)	2.98
218.98	8.0291(8)	5.6765(9)	365.956(8)	3.14
223.43	8.0304(9)	5.6775(6)	366.138(8)	3.33
227.62	8.0316(4)	5.6784(2)	366.299(2)	3.47
231.47	8.0328(2)	5.6792(2)	366.458(4)	3.64
235.57	8.0339(6)	5.6800(3)	366.614(7)	3.84
239.35	8.0350(5)	5.6807(9)	366.763(3)	3.97
243.47	8.0362(3)	5.6815(5)	366.920(1)	4.13
247.68	8.0373(9)	5.6824(5)	367.084(2)	4.36
251.69	8.0385(8)	5.6833(0)	367.247(8)	4.51
255.67	8.0396(3)	5.6840(2)	367.390(3)	4.70
260.60	8.0407(6)	5.6847(8)	367.542(7)	4.88
265.11	8.0421(4)	5.6857(5)	367.731(6)	5.11
269.61	8.0433(4)	5.6866(0)	367.896(4)	5.36
273.79	8.0446(3)	5.6874(7)	368.070(7)	5.61
278.01	8.0458(3)	5.6883(1)	368.234(9)	5.58
282.20	8.0469(5)	5.6891(0)	368.388(5)	5.86
286.21	8.0480(1)	5.6898(6)	368.534(8)	5.93

 Table S19. Evolution of refined lattice parameters in MAPbCl3.