Supplementary Information

Oxygen deficiency in Sr₂FeO_{4-x}: Electrochemical control and impact on magnetic properties

Peter Adler^{a,*}, Liane Schröder^a, Klaus Teske^a, Manfred Reehuis^b, Andreas Hoser^b, Patrick Merz^a, Walter Schnelle^a, Claudia Felser^a, and Martin Jansen^{a,c,†}

^aMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany. E-Mail: adler@cpfs.mpg.de ^bHelmholtz-Zentrum für Materialien und Energie, 14109 Berlin, Germany ^cMax-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany. E-Mail: m.jansen@fkf.mpg.de

H_2/H_2O	500 °C	600 °C	700 °C	800 °C	900 °C	1000 °C
100	$1.7 \cdot 10^{-32}$	$1.2 \cdot 10^{-28}$	$1.4 \cdot 10^{-25}$	$4.5 \cdot 10^{-23}$	$5.2 \cdot 10^{-21}$	$2.9 \cdot 10^{-19}$
10	$1.7 \cdot 10^{-30}$	$1.2 \cdot 10^{-26}$	$1.4 \cdot 10^{-23}$	$4.5 \cdot 10^{-21}$	$5.2 \cdot 10^{-19}$	$2.9 \cdot 10^{-17}$
1	$1.7 \cdot 10^{-28}$	$1.2 \cdot 10^{-24}$	$1.4 \cdot 10^{-21}$	$4.5 \cdot 10^{-19}$	$5.2 \cdot 10^{-17}$	$2.9 \cdot 10^{-15}$
0.1	$1.7 \cdot 10^{-26}$	$1.2 \cdot 10^{-22}$	$1.4 \cdot 10^{-19}$	$4.5 \cdot 10^{-17}$	$5.2 \cdot 10^{-15}$	$2.9 \cdot 10^{-13}$
0.01	$1.7 \cdot 10^{-24}$	$1.2 \cdot 10^{-20}$	$1.4 \cdot 10^{-17}$	$4.5 \cdot 10^{-15}$	$5.2 \cdot 10^{-13}$	$2.9 \cdot 10^{-11}$
0.001	$1.7 \cdot 10^{-22}$	$1.2 \cdot 10^{-18}$	$1.4 \cdot 10^{-15}$	$4.5 \cdot 10^{-13}$	$5.2 \cdot 10^{-11}$	$2.9 \cdot 10^{-9}$

Table S1 Partial pressures of oxygen in the system Ar-H₂-H₂O (in bar)

Table S2 Refinement results for Sr_2FeO_4 powder. The data were refined with the program WinCSD (Ref. 46 of the main paper).

Sr ₂ FeO ₄	a [Å]	<i>c</i> [Å]	V[Å ³]			
	3.86283(2)	12.39327(8)	184.926(3)			
I4/mmm	Wyckoff-	x	у	z	$U_{ m iso/eq}$	
	Position					
Sr	4 <i>e</i>	0	0	0.35682(4)	0.0098(2)	
Fe	2a	0	0	0	0.0146(5)	
01	4 <i>e</i>	0	0	0.1568(2)	0.0056(9)	
O2	4c	0	1/2	0	0.0044(8)	
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sr	0.0070(2)	0.0070(2)	0.0152(4)	0	0	0
Fe	0.0118(7)	0.0118(7)	0.020(1)	0	0	0

 $R_{\rm p} = 0.0872, R_{\rm I} = 0.0254 \ (R_{\rm I} = \sum ||I_{\rm obs}| - |I_{\rm calc}|| / \sum |I_{\rm obs})$

Fig. S1 Solid state electrolyte coulometry. Plot of log p_{O2} vs. 1/T representing the equilibrium $2 \text{ H}_2\text{O} \leftrightarrow 2 \text{ H}_2 + \text{O}_2$, for a set of given $\text{H}_2/\text{H}_2\text{O}$ ratios.

Fig. S2 Magnetic properties of a $Sr_2FeO_{3.84}$ sample which was part of the batch used for PND studies. Left: Temperature dependence of the magnetic susceptibility. Right: Magnetization curve at 1.8 K.

Fig. S3 Hyperfine field distributions $P(B_{hf})$ of the Fe⁴⁺ component for Sr₂FeO_{3.92} and Sr₂FeO_{3.87} as obtained from the fits displayed in Fig. 9(b) of the main paper.

Fig. S4 Mössbauer spectra of a sample of oxygen-deficient $Sr_2FeO_{3.84}$ measured at the indicated temperatures. The sample was part of the batch measured by PND. Dots correspond to the experimental data, solid lines to the best fits. The subspectra are shown as colored lines (blue and cyan correspond to magnetically ordered and paramagnetic Fe⁴⁺, red and green to magnetically ordered Fe³⁺, and pink to paramagnetic Fe³⁺ sites, respectively).

Fig. S5 Mössbauer spectra of a sample of oxygen-deficient $Sr_2FeO_{3.88}$ measured at the indicated temperatures. Dots correspond to the experimental data, solid lines to the best fits. The subspectra are shown as colored lines (blue and cyan correspond to magnetically ordered and paramagnetic Fe⁴⁺, red and green to magnetically ordered Fe³⁺, and pink to paramagnetic Fe³⁺ sites, respectively). Note the different ratio between the two Fe³⁺ components and the increased fraction of the magnetic component at 30 K compared to the spectra of a sample of Sr₂FeO_{3.87} displayed in Fig. 9(b).