Supplementary Information

The surface reconstruction induced enhancement of the oxygen evolution reaction on $\alpha-\mathrm{SnWO}_{4}(010)$ based on a density functional theory study

Wentao Wang*1, Yonggang Wu*2, Deliang Chen ${ }^{2}$, Hongling Liu ${ }^{2}$, Mei Xu ${ }^{3}$, Xuefei Liu ${ }^{3}$, Lipeng Xin*4
${ }^{1}$ Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
${ }^{2}$ School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China

${ }^{3}$ School of Physical and Electronic Sciences, Guizhou Normal University, Guiyang 550025, China ${ }^{4}$ Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
*E-mail: wuli8@163.com (W. Wang, https://orcid.org/0000-0003-4308-3515); wuyonggang@gznc.edu.cn (Y. Wu); chemphysxin@163.com (L. Xin)

Fig. S1. Side view of three possible stoichiometric structures of $\alpha-$ SnWO $_{4}$ (010): (a) ST1, (c) ST2, and (e) ST3 are the structures before optimization, and (b), (d), and (f) are after optimization, respectively. The red, gray and light blue balls represent O, W, and Sn atoms.

Fig. S2. Variations of temperature and energy plotted as a function of time for AIMD simulations of (a) ST1 (b)ST2, and (c)ST3 terminations under 300 K for 8 ps with a time step of 1 fs . The right parts show the termination structures at 0 ps and 8 ps .

Fig. S3. (a) The $\Delta \mu_{\mathrm{O}}$ as a function of oxygen gas pressure at various temperatures according to Equation (20), (b) the phase diagrams for α - $\mathrm{SnWO}_{4}(010)$ surface with different terminations (including O-Sn term., M-Sn term., R-OOW term., O-W term., W-O term., R-OOSn term., and ST3 term.) as functions of chemical potential variations for Sn and oxygen atoms, (c) the $\Delta \mu_{\mathrm{O}}$ as a function of temperature at various oxygen gas pressures. All total energies are obtained using the PBE method.

Fig. S4. Surface Gibbs free energies as a function of $\Delta \mu_{\mathrm{Sn}}$ at a certain temperature and pressure for $\alpha-\mathrm{SnWO}_{4}(010)$ surface using the PBE method (a) at $T=300 \mathrm{~K}$ and (b) $T=1000 \mathrm{~K}$.

Fig. S5. The (a)Band structures, (b)TDOS and PDOS of bulk $\alpha-$ SnWO $_{4}$ are obtained from HSE06 calculations. The Fermi level is set to zero and indicated by the red dotted-dashed line.

(c) R-OOSn term.

Fig. S6. The layer-resolved density of states of (a) O-Sn term., (b) O-W term. (c) R-OOSn term. and ST3 term., for $\mathrm{SnWO}_{4}(010)$ surfaces, which are obtained from HSE06 calculations. The Fermi level is set to zero and indicated by a perpendicular red dot-dash line. The numbers represent the number of atomic layers for $\alpha-\mathrm{SnWO}_{4}(010)$ surfaces

Fig. S7. The optimized structures for $\mathrm{O}^{*}, \mathrm{OH}^{*}$, and OOH^{*} intermediates on the $\mathrm{O}-\mathrm{Sn}$ termination of α-SnWO ${ }_{4}$ (010) surfaces at different (a) and (b) sites.

Fig. S8. The free energy profile for OER on the ST3 termination of α-SnWO4(010) surface at different voltages. The optimized structures for $\mathrm{O}^{*}, \mathrm{OH}^{*}$ and OOH^{*} intermediates on the (b)ST3 termination of $\alpha-\mathrm{SnWO}_{4}$ (010) surfaces.

Note S1 Computational hydrogen electrode

For the OER reaction, four elementary steps are usually needed to proceed, as listed in equations (1) to (4), which involve adsorbed OH, O and OOH species on the surface (*):

$$
\begin{align*}
& 2 \mathrm{H}_{2} \mathrm{O}+* \rightarrow \mathrm{HO}^{*}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-} \tag{S1}\\
& \mathrm{OH}^{*}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}^{*} \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{e}^{-} \tag{S2}\\
& \mathrm{H}_{2} \mathrm{O}+\mathrm{O}^{*} \rightarrow \mathrm{HOO}^{*}+\mathrm{H}^{+}+\mathrm{e}^{-} \tag{S3}\\
& \mathrm{HOO}^{*} \rightarrow \mathrm{O}_{2}+*+\mathrm{H}^{+}+\mathrm{e}^{-} \tag{S4}
\end{align*}
$$

The above mechanism is the most common one of the water-splitting on semiconductor surfaces. It involves the dehydrogenation of $\mathrm{H}_{2} \mathrm{O}$, followed by the dissociation of HO^{*} to O^{*}. Subsequently, O^{*} reacts with another $\mathrm{H}_{2} \mathrm{O}$ to generate HOO*, which then dehydrogenates to O_{2}.

The Gibbs free energy change for steps $1-4$ can be expressed as

$$
\begin{align*}
\Delta \mathrm{G}_{1} & =\Delta \mathrm{G}\left(\mathrm{OH}_{a d s}\right)-\mathrm{eU}+\Delta \mathrm{G}_{\mathrm{H}^{+}}(\mathrm{pH}) \tag{S5}\\
\Delta \mathrm{G}_{2} & =\Delta \mathrm{G}\left(\mathrm{O}_{a d s}\right)-\Delta \mathrm{G}\left(\mathrm{OH}_{a d s}\right)-\mathrm{eU}+\Delta \mathrm{G}_{\mathrm{H}^{+}}(\mathrm{pH}) \tag{S6}\\
\Delta \mathrm{G}_{3} & =\Delta \mathrm{G}\left(\mathrm{OOH}_{a d s}\right)-\Delta \mathrm{G}\left(\mathrm{O}_{a d s}\right)-\mathrm{eU}+\Delta \mathrm{G}_{\mathrm{H}}(\mathrm{pH}) \tag{S7}\\
\Delta \mathrm{G}_{4} & =4.92-\Delta \mathrm{G}\left(\mathrm{OOH}_{a d s}\right)-\mathrm{eU}+\Delta \mathrm{G}_{\mathrm{H}^{+}}(\mathrm{pH}) \tag{S8}
\end{align*}
$$

where U is the potential measured against normal hydrogen electrode (NHE) at standard conditions $(\mathrm{T}=298.15 \mathrm{~K}, \mathrm{P}=1 \mathrm{bar}, \mathrm{pH}=0)$. The free energy change of the protons relative to the above specified electrode at non-zero pH is represented by Nernst equation as $\Delta \mathrm{G}_{\mathrm{H}^{+}}(\mathrm{pH})=-\mathrm{k}_{\mathrm{B}} \mathrm{T} \ln (10) \times \mathrm{pH}$. The sum of $\Delta \mathrm{G}_{1-4}$ is fixed to the negative of experimental Gibbs free energy of formation of two water molecules $-2 \Delta \mathrm{~g}_{\mathrm{H}_{2} \mathrm{O}}^{\exp }=4 \times 1.23=4.92 \mathrm{eV}$ to avoid calculating the O bond energy, which is difficult to determine accurately within GGA-DFT. The Gibbs free energies of eqs 5-8 depend on the adsorption energies of $\mathrm{OH}^{*}, \mathrm{O}^{*}$, and OOH^{*}. To compute the free energy change $(\Delta \mathrm{G})$ of each elementary step of electrochemical urea synthesis, we adopted the computational hydrogen electrode model developed by Nørskov et al. 1 ccording to which the $\Delta \mathrm{G}$ of an electrochemical reaction is defined as: $\Delta \mathrm{G}_{\mathrm{i}}=\Delta \mathrm{E}_{\mathrm{i}}+$ $\Delta \mathrm{ZPE}_{\mathrm{i}}-\mathrm{T} \Delta \mathrm{S}_{\mathrm{i}}$, where i means $\mathrm{OH}^{*}, \mathrm{O}^{*}$ and OOH^{*}. ZPE and S are the zero-point energy and entropy corrections, respectively. The energy differences $\Delta \mathrm{E}_{\mathrm{i}}$ calculated relative to $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2}($ at $\mathrm{U}=0$ and $\mathrm{pH}=0)$ as

$$
\begin{align*}
& \Delta \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{OH}^{*}\right)=\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{OH}^{*}\right)-\mathrm{E}\left({ }^{*}\right)-\left[\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2} \mathrm{O}\right)-1 / 2^{*} \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2}\right)\right] \tag{S9}\\
& \Delta \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{O}^{*}\right)=\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{O}^{*}\right)-\mathrm{E}\left({ }^{*}\right)-\left[\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2}\right)\right] \tag{S10}
\end{align*}
$$

$$
\begin{equation*}
\Delta \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{OOH}^{*}\right)=\mathrm{E}_{\mathrm{DFT}}\left(\mathrm{OOH}^{*}\right)-\mathrm{E}(*)-\left[2^{*} \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2} \mathrm{O}\right)-3 / 2^{*} \mathrm{E}_{\mathrm{DFT}}\left(\mathrm{H}_{2}\right)\right] \tag{S11}
\end{equation*}
$$

The theoretical overpotential is then readily defined as:

$$
\begin{equation*}
\eta=\max \left[\Delta \mathrm{G}_{1}, \Delta \mathrm{G}_{2}, \Delta \mathrm{G}_{3}, \Delta \mathrm{G}_{4}\right] / \mathrm{e}-1.23[\mathrm{~V}] \tag{S12}
\end{equation*}
$$

The entropies of gas-phase H_{2} is obtained from the NIST database ${ }^{2}$ with the standard condition, and the adsorbed species were only taken vibrational entropy (Sv) into account, as shown in the following formula:

$$
\begin{equation*}
\mathrm{S}_{\mathrm{V}}=\sum_{\mathrm{i}} \mathrm{R}\left\{\frac{\mathrm{hv}_{\mathrm{i}}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}\left[\exp \left(\frac{\mathrm{hv}_{i}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}\right)-1\right]^{-1}-\ln \left[1-\exp \left(-\frac{h v_{\mathrm{i}}}{\mathrm{k}_{\mathrm{B}} T}\right)\right]\right\} \tag{S13}
\end{equation*}
$$

Among which $\mathrm{R}=8.314 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}, \mathrm{~T}=298.15 \mathrm{~K}, \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}, \mathrm{k}_{\mathrm{B}}=$ $1.38 \times 10^{-23} \mathrm{~J} \cdot \mathrm{~K}^{-1}$, i is the frequency number, v_{i} is the vibrational frequency (unit is cm^{-1}).

1. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 17886-17892.
2. R. D. J. III, NIST Computational Chemistry Comparison and Benchmark Database, 2022.
