Supplementary Information

Structural, Electronic and Optical Properties of four α-Se-based Heterostructures with Hyperbolic Characteristics

Chunxiang Zhao,^{1,2} Jiaqi Wang,¹ Xiaolin Cai,³ Panpan Wang,¹ Zhili Zhu,¹ Chunyao Niu,^{1,*} and Yu Jia^{1,2,4}

¹International Laboratory for Quantum Functional Materials of Henan,

and and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

²Key Laboratory for Special Functional Materials of Ministry of Education,

School of Physics and Electronics, Henan University, Kaifeng 475004, China

³School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

⁴Key Laboratory for Quantum Materials Science, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China (Dated: August 4, 2022)

PACS numbers:

Figure S 1: (Color online). (a)-(e) Optimized structure of α-Se, Ca(OH)₂, GaSe, h-BN and MoS₂ monolayers, respectively.

Figure S 2: (Color online). (a)-(e) The calculated phonon dispersion curves of α -Se, Ca(OH)₂, GaSe, h-BN and MoS₂ monolayers, respectively.

Figure S 3: (Color online). (a)-(e) The calculated electronic band structures of α -Se, Ca(OH)₂, GaSe, h-BN and MoS₂ monolayers with PBE method, respectively.

Table S I: The calculated lattice constants (Å), band gap (eV) and band gap type of α -Se, Ca(OH)₂, GaSe, h-BN and MoS₂ monolayers, respectively

structure	α-Se	Ca(OH) ₂	GaSe	h-BN	MoS ₂
Lattice (Å)	3.72	3.62	3.82	2.51	3.18
E_g (eV)	0.73	3.68	2.23	4.65	1.68
Band gap type	Indirect	Direct	Indirect	Direct	Direct

Figure S 4: (Color online). Top and side views of α -Se/Ca(OH)₂ heterobilayer with six types of stacking configurations: (a) T₁, (b) T₂, (c) T₃, (d) B₁, (e) B₂ and (f) B₃. The black dashed lines represent the unit cell.

Figure S 5: (Color online). Top and side views of α -Se/GaSe heterobilayer with four types of stacking configurations: (a) T₁, (b) T₂, (c) T₃ and (d) B. The black dashed lines represent the unit cell.

Figure S 6: (Color online). Top and side views of α -Se/h-BN heterobilayer with four types of stacking configurations: (a) T₁, (b) T₂, (c) T₃, (d) T₄, (e) H₁ and (f) H₂. The black dashed lines represent the unit cell.

Figure S 7: (Color online). Top and side views of α -Se/MoS₂ heterobilayer with four types of stacking configurations: (a) T₁, (b) T₂, (c) T₃, (d) H₁, (e) H₂ and (f) H₃. The black dashed lines represent the unit cell.

Figure S 8: (Color online). (a)-(d) The projected density of states (PDOS) of α -Se/Ca(OH)₂, α -Se/GaSe, α -Se/h-BN and α -Se/MoS₂ VDWHs, respectively.

Figure S 9: (Color online). (a)-(d) The projected band structures of (a) α -Se/Ca(OH)₂, (c) α -Se/GaSe, (e) α -Se/h-BN and (g) α -Se/MoS₂ VDWHs. The partial charge densities of the VBM and CBM for (b) α -Se/Ca(OH)₂, (d) α -Se/GaSe, (f) α -Se/h-BN and (h) α -Se/MoS₂ VDWHs obtained by HSE06 functional, respectively.

Figure S 10: (Color online). (a)-(d) The band alignment of α -Se/Ca(OH)₂, α -Se/GaSe, α -Se/h-BN and α -Se/MoS₂ VDWHs, respectively.

Figure S 11: (Color online). (a)-(e) The band-edge position of α-Se, Ca(OH)₂, GaSe, h-BN and MoS₂ monolayers, respectively.

Table S II: The calculated effective mass for electrons and holes of α -Se/Ca(OH)₂, α -Se/GaSe, α -Se/h-BN and α -Se/MoS₂ VDWHs along the *x* and *y* directions.

VDWH	$m_e^x(m_0)$	$m_e^y(m_0)$	$m_h^x(m_0)$	$m_{h}^{y}\left(m_{0} ight)$
α -Se/Ca(OH) ₂	0.13	0.11	3.57	2.27
α-Se/GaSe	0.14	0.12	0.66	1.25
α -Se/h-BN	0.11	0.10	0.47	1.49
α -Se/MoS ₂	0.13	0.14	1.42	0.49

Figure S 12: (Color online). The structures of α -Se/h-BN VDWH when the compressive strain is (a) -9% and (b) -10%, respectively. The structures of α -Se/MoS₂ VDWH when the compressive strain is (c) -8% and (d) -10%, respectively.

Figure S 13: (Color online). Schematic diagram of the positive electric field perpendicular to the interface of the four α -Se-based VDWHs.

* e-mail address:niuchunyao@zzu.edu.cn