Electronic Supplementary Information

A study combining magic-angle spinning NMR and small-angle X-ray scattering on the interaction in the mixture of poly(benzyl methacrylate) and ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide

Takeshi Morita,¹,* Hitomi Okada,² Taisei Yamada,¹ Ryo Hidaka,² Takeshi Ueki,³,⁴ Kazuyuki Niitsuma,⁵ Yuzo Kitazawa,⁵ Masayoshi Watanabe,⁵,⁶ Keiko Nishikawa¹,⁷ and Kenjirou Higashi²,*

¹ Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan
² Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
³ Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
⁴ Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
⁵ Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
⁶ Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
⁷ Toyota Physical & Chemical Research Institute, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan

Corresponding authors

*Email: T Morita (moritat@faculty.chiba-u.jp) or K Higashi (ken-h@faculty.chiba-u.jp)

Overlap concentration

On the basis of the Guinier approximation,¹ the radius of gyration, \(R_g \), of the PBnMA chain was evaluated to be 3.6±0.1, 4.5±0.2 and 5.8±0.5 nm for the polymers with \(M_w = 18, 27 \) and 40 kDa, respectively. The Guinier plots of the SAXS profiles for the polymer with \(M_w = 18, 27 \) and 40 kDa are shown in Fig. S1. The \(R_g \) values were determined by iteration with checking the consistency between the evaluated \(R_g \) value and the appropriate \(q \)-region as determined on the basis of \(1/R_g \). The overlap
concentrations, \(c^* \), for the polymers with \(M_w = 18, 27 \) and 40 kDa were approximately estimated to be 0.16, 0.12 and 0.080 g/mL (corresponding to \(ca. 16, 12 \) and 8.0 wt\%), respectively, using the equation
\[
c^* = \frac{3M_w}{(4\pi N_A R_g^3)}
\]
where \(N_A \) is the Avogadro’s number.\(^2,3\) Considering the estimated concentrations, the concentration studied here was sufficiently low compared with \(c^* \).

Fig. S1: The Guinier plots, \(\ln(I(q)) \) vs. \(q^2 \), of the SAXS profiles for PBnMA in [C\(_2\)mim][NTf\(_2\)]. Solid lines represent the determined slope for evaluation of radius of gyration, \(R_g \), using the appropriate small-angle region below \(q = 1/R_g \). Green arrows indicate the appropriate \(q \)-region as determined on the basis of \(1/R_g \).

Concentration dependence of radius of gyration

Fig. S2 shows concentration dependence of the evaluated \(R_g \) for the polymer of \(M_w = 18 \) kDa. The \(R_g \) values at concentrations of 0.10, 0.25 and 1.0wt\% were evaluated using the Guinier approximation.\(^1\) Although the concentration of 1wt\% is considered as sufficiently low compared with \(c^* \), the \(R_g \) values showed concentration dependence and increased with decreasing the concentration. The tendency identified in Fig. S2 is normally observable in solution systems.\(^4\)
Fig. S2: Concentration dependence of R_g for PBnMA with $M_w = 18$ kDa in [C$_2$ mim][NTf$_2$].

Fig. S3 shows dependence of the infinite dilution radius of gyration, $R_g(c \to 0)$, on the molecular weight. The molecular weights were set at $M_w = 18, 27, 40$ and 78 kDa.

Fig. S3: Dependence of $R_g(c \to 0)$ on molecular weight of PBnMA.
References