Supporting Information

Insulation of Coumarin Derivative with [1]Rotaxane to Control Solvation-induced Effects in Excited-state Dynamics for Enhanced Luminescence

Go M. Russell, Hiroshi Masai, Jun Terao*

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

Table of Contents

S1. NMR	and HR-MS spectra	S3
S2. Kinet	tic stabilities of <i>ins-</i> CM and <i>uns-</i> CM ····································	\$15
S3. Optic	al Measurements S	\$16
S3.1	Absorption and emission spectra S	\$16
S3.2	Lippert-Mataga plots ······ S	\$18
S3.3	Luminescence decay curve S	\$19
S4. DFT	Calculation of Coumarin Derivatives S	\$23
S5. Refer	ences ······ S	528

S1. NMR and HR-MS spectra

¹H NMR spectrum of **2** (500 MHz, CDCl₃, r.t.)

¹³C NMR spectrum of **2** (126 MHz, CDCl₃, r.t.)

¹H-¹H COSY NMR spectrum of **2**

¹H-¹³C HMBC NMR spectrum of **2**

¹H-¹³C HSQC NMR spectrum of **2**

¹H NMR spectrum of *uns*-CM (500 MHz, CDCl₃, r.t.)

¹³C NMR spectrum of *uns*-CM (126 MHz, CDCl₃, r.t.)

¹H-¹H COSY NMR spectrum of *uns*-CM

¹H-¹H ROESY NMR spectrum of *uns*-CM

¹H-¹³C HMBC NMR spectrum of *uns*-CM

¹H-¹³C HMQC NMR spectrum of *uns*-CM

S9

¹H NMR spectrum of *ins*-CM (500 MHz, CDCl₃, r.t.)

¹³C NMR spectrum of *ins*-CM (126 MHz, CDCl₃, r.t.)

¹H-¹H COSY NMR spectrum of *ins*-CM

¹H-¹H ROESY NMR spectrum of *ins*-CM

¹H-¹³C HMBC NMR spectrum of *ins*-CM

¹H-¹³C HMQC NMR spectrum of *ins*-CM.

¹H DOSY NMR spectrum of *ins*-CM

S2. Kinetic stabilities of ins-CM and uns-CM

Fig. S1 ¹H NMR spectra (500 MHz) of (a) *ins*-CM and (b) *uns*-CM before and after 12 h in acetonitrile- d_3 at room temperature.

S3. Optical Measurements

S3.1 Absorption and emission spectra

Fig. S2 (a) Normalized absorption spectra and (b) photoluminescence spectra of *ins*-CM (excitation at 365 nm) in various solvents. (c) Normalized absorption spectra and (d) photoluminescence spectra of *uns*-CM (excitation at 365 nm) in various solvents.

	ins-CM							uns-CM					
	$\lambda_{ m abs}{}^a$	$\lambda_{\mathrm{fl}}{}^b$	${\pmb{\varPhi}_{\mathrm{f}}}^{c}$	$ au^d$	$k_{\mathrm{f}}{}^{e}$	$k_{\rm nr}^{f}$		$\lambda_{ m abs}{}^a$	$\lambda_{\mathrm{fl}}{}^b$	${\pmb{\varPhi}_{\mathrm{f}}}^{c}$	$ au^d$	$k_{\mathrm{f}}{}^{e}$	$k_{\rm nr}^{f}$
Solvent	(nm)	(nm)	(%)	(ns)	(ns ⁻¹)	(ns ⁻¹)		(nm)	(nm)	(%)	(ns)	(ns ⁻¹)	(ns ⁻¹)
Benzene	358	428	81.7	1.37	0.60	0.13		372	455	93.2	1.76	0.53	0.039
Toluene	358	428	77.2	1.37	0.56	0.17		372	454	93.6	1.75	0.53	0.037
CH_2Cl_2	359	478	86.0	2.54	0.34	0.055		371	515	41.4	1.42	0.29	0.41
CHCl ₃	360	465	88.7	2.12	0.42	0.053		372	495	68.3	1.91	0.36	0.17
CH_4Cl_2	360	481	92.8	2.53	0.37	0.028		372	516	60.2	2.21	0.27	0.18
MeCN	364	537	12.7	1.14	0.11	0.77		373	547	2.0	0.815	0.025	1.20
EtOAc	364	477	77.7	2.68	0.29	0.083		377	507	58.2	2.34	0.25	0.18
Acetone	367	517	33.8	2.12	0.16	0.31		380	549	5.3	0.529	0.10	1.8
THF	368	482	80.4	2.65	0.30	0.074		382	512	53.5	2.15	0.25	0.22
MeOH	369	536	1.5	0.48	0.031	2.1		377	543	0.9	0.419	0.021	2.4
EtOH	372	543	4.9	0.462	0.11	2.1		382	532	2.3	0.771	0.030	1.3
ⁱ PrOH	375	538	16.3	0.778	0.21	1.1		384	548	6.2	0.514	0.12	1.8
DMSO	379	559	7.6	0.562	0.14	1.6		392	571	2.7	0.824	0.033	1.2

Table S1. Summary of optical properties of ins- and uns-CM.

^{*a*} Maximum absorption wavelength. ^{*b*} Maximum emission wavelength excited at 365 nm. ^{*c*} Fluorescent quantum yield excited at 365 nm. ^{*d*} Fluorescent lifetime excited at 365 nm. ^{*e*} Radiative rate constant $(k_{\rm fr} = \Phi/\tau)$. ^{*f*} Non-radiative deactivation rate constant $(k_{\rm nr} = (1-\Phi)/\tau)$.

S3.2 Lippert-Mataga plots

Fig. S3 Plot to the Lippert-Mataga expression of *ins*-CM and *uns*-CM.

S3.3 Luminescence decay curve

Fig. S4 Emission decay curve of *ins*-CM and instrument response function (IRF) in (a) benzene and (b) toluene.

Fig. S5 Emission decay curve of *ins*-CM and instrument response function (IRF) in (a) CHCl₃, (b) EtOAc, (c) THF, (d) CH₂Cl₂, and (e) CH₄Cl₂.

Fig. S6 Emission decay curve of *ins*-CM and instrument response function (IRF) in (a) DMSO, (b) ^{*i*}PrOH, (c) acetone, (d) EtOH, (e) MeCN, and (f) MeOH.

Fig. S7 Emission decay curve of *uns*-CM and instrument response function (IRF) in a) benzene and b) toluene.

Fig. S8 Emission decay curve of *uns*-CM and instrument response function (IRF) in (a) CHCl₃, (b) EtOAc, (c) THF, (d) CH₂Cl₂, and (e) CH₄Cl₂.

Fig. S9 Emission decay curve of *uns*-CM and instrument response function (IRF) in (a) DMSO, (b) ¹PrOH, (c) acetone, (d) EtOH, (e) MeCN, and (f) MeOH.

S4. DFT Calculation of Coumarin Derivatives

DFT calculations were conducted for *ins*-CM and coumarin derivative (S1) bearing methoxy group instead of PM α -CD in *ins*-CM under B3LYP/ 6-31G(d,p) level with Gaussian09.¹ Details of their DFT-optimized geometries are presented in the following Tables S1 and S2.

Fig. S10 (a) Chemical structure of S1 as a coumarin derivative bearing methoxy group instead of PM α -CD in *ins*-CM. (b) DFT-optimized structure and the corresponding HOMO/LUMO orbitals of S1. (B3LYP/6-31G(d, p)).

Center	Atomic	Coo	Coordinates (Angstroms)		16	0	3.064044	1.792665	0.004682
Number	Symbol	Х	Y	Z	17	0	-3.691780	1.583160	-0.005350
1	С	5.248047	0.732101	0.000482	18	С	-5.084780	1.659449	-0.006530
2	С	6.000942	-0.457250	-0.001200	19	С	-5.794030	0.389413	-0.003510
3	С	5.332533	-1.694070	-0.000450	20	С	-5.165350	-0.814710	-0.000130
4	С	3.946710	-1.729210	0.002437	21	0	-5.589340	2.758437	-0.009750
5	С	3.170302	-0.556240	0.003519	22	С	-5.947440	-2.100350	0.002768
6	С	3.855595	0.689631	0.004016	23	Н	5.770004	1.681985	0.007165
7	Ν	7.387116	-0.401780	0.050450	24	Н	5.903727	-2.617750	0.002592
8	С	1.754726	-0.610740	0.003190	25	Н	3.432014	-2.684460	0.000759
9	С	0.538404	-0.672310	0.002505	26	Н	7.874150	-1.230020	-0.260370
10	С	-0.879360	-0.727010	0.001852	27	Н	7.813530	0.450927	-0.282520
11	С	-1.636790	0.455996	-0.001380	28	Н	-1.152770	1.425188	-0.003390
12	С	-3.026530	0.390571	-0.001980	29	Н	-3.436180	-2.982570	0.006166
13	С	-3.714000	-0.841490	0.000655	30	Н	-0.975610	-2.887750	0.007281
14	С	-2.938040	-2.018890	0.003947	31	Н	-6.875080	0.468711	-0.004240
15	С	-1.556300	-1.972110	0.004530	32	Н	-5.710240	-2.704100	0.886032

Table S2. Optimum structural coordinates of S1 by B3LYP/ 6-31G(d,p), Stoichiometry C₁₉H₁₅NO₃.

33	Н	-7.021430	-1.904290	0.001508	36	Н	2.855754	3.794295	0.021946
34	Н	-5.709010	-2.708850	-0.876890	37	Н	4.290358	3.219668	0.912862
35	С	3.674658	3.074173	0.016544	38	Н	4.291715	3.235727	-0.876270

Table S2. Optimum structural coordinates of *ins*-CM by B3LYP/ 6-31G(d,p), Stoichiometry

$C_{71}H_{105}N$	10_{32} .								
Center	Atomic	Coo	ordinates (Ang	stroms)	28	Н	-1.97937	0.88661	-3.22618
Number	Symbol	Х	Y	Ζ	29	Н	-2.09942	0.51663	-0.80791
1	С	0.30306	-1.72406	5.51502	30	Н	1.60717	0.34797	-6.48454
2	С	-0.84804	-1.23412	6.15350	31	Н	-1.28100	1.94123	-5.32257
3	С	-1.80706	-0.55266	5.37928	32	Н	-0.65651	1.05228	-6.72424
4	С	-1.60123	-0.36544	4.02322	33	Н	-1.77560	0.27080	-5.59259
5	С	-0.44653	-0.84002	3.36553	34	0	1.67824	-1.99262	3.61485
6	С	0.50174	-1.54061	4.15172	35	0	3.82607	-2.70231	1.99938
7	Ν	-1.01259	-1.37513	7.52290	36	0	5.73355	-3.22226	-1.09468
8	С	-0.25769	-0.59216	1.97912	37	0	3.59578	-5.16240	-1.21381
9	С	-0.13606	-0.36333	0.78623	38	0	1.14358	-3.98962	-0.15016
10	С	-0.03766	-0.12611	-0.61512	39	0	-0.56010	-5.27823	0.81795
11	С	1.16266	-0.35034	-1.30870	40	0	0.59187	-5.20104	-2.63994
12	С	1.21197	-0.14072	-2.68446	41	0	-2.15401	-4.48125	-2.87996
13	С	0.09183	0.30184	-3.41642	42	0	-1.70191	-4.31783	3.27955
14	С	-1.09877	0.53607	-2.69891	43	0	-3.16271	-3.02993	-0.58969
15	С	-1.17131	0.32958	-1.33368	44	0	-4.84082	-2.48325	0.95766
16	0	2.41209	-0.38449	-3.29315	45	0	-5.12945	-3.02485	-2.62120
17	С	2.59896	-0.22213	-4.66405	46	0	-5.88448	-0.26472	-2.34509
18	С	1.44131	0.22731	-5.42019	47	0	-6.33824	-0.47954	2.57163
19	С	0.23646	0.48790	-4.84869	48	0	-4.37128	1.01875	-0.16770
20	0	3.69685	-0.45935	-5.11682	49	0	-4.12136	2.48340	1.66187
21	С	-0.93009	0.96352	-5.67105	50	0	-5.64965	3.11645	-1.61798
22	Н	1.06807	-2.25162	6.07649	51	0	-3.54149	5.05426	-1.49410
23	Н	-2.70502	-0.16349	5.85097	52	0	-2.83690	4.47729	3.19357
24	Н	-2.34238	0.16926	3.44117	53	0	-1.22515	3.94013	-0.07540
25	Н	-1.95979	-1.31223	7.86711	54	0	0.33311	5.13734	1.20831
26	Н	-0.47956	-2.10997	7.96487	55	0	-0.36055	5.31375	-2.36425
27	Н	2.05989	-0.68007	-0.79878	56	0	2.37989	4.57284	-2.32900

57	Ο	2.95593	5.43666	2.62958	93	С	-2.58767	3.95641	0.37617
58	0	3.10705	2.96477	0.01554	94	С	-2.74822	2.84691	1.43569
59	0	4.39613	2.24368	1.84389	95	С	-2.19127	3.28657	2.78296
60	0	5.48223	3.15817	-1.49214	96	С	-7.05699	3.06811	-1.45318
61	0	6.24316	0.36822	-1.31047	97	С	-3.51955	5.00034	-2.91252
62	0	5.49712	0.12658	3.49504	98	С	-2.24597	5.04789	4.34204
63	0	4.35729	-1.13986	0.31569	99	С	-0.47485	5.12455	0.04108
64	С	4.74654	-2.30844	0.99253	100	С	0.42892	5.30308	-1.18618
65	С	4.87601	-3.48268	-0.00125	101	С	1.51474	4.22265	-1.25633
66	С	3.51322	-3.89307	-0.58069	102	С	2.29340	4.14705	0.06452
67	С	2.42504	-4.02107	0.49693	103	С	1.34582	4.11162	1.28598
68	С	2.48467	-2.88135	1.52753	104	С	2.07471	4.32306	2.61551
69	С	1.63498	-3.14933	2.75681	105	С	-0.00772	6.32725	-3.29432
70	С	7.09629	-3.01569	-0.75542	106	С	2.72369	3.51319	-3.21029
71	С	3.84096	-5.12425	-2.61538	107	С	2.35342	6.68725	2.92241
72	С	0.40861	-5.18364	-0.21891	108	С	4.37691	2.98691	0.64073
73	С	-0.32539	-5.28836	-1.56290	109	С	5.43673	2.39646	-0.29636
74	С	-1.41088	-4.21522	-1.69708	110	С	5.14587	0.91955	-0.58765
75	С	-2.35410	-4.21315	-0.48611	111	С	4.93806	0.12178	0.70610
76	С	-1.55165	-4.23212	0.83554	112	С	4.03599	0.85568	1.72749
77	С	-2.41817	-4.49313	2.06393	113	С	4.13007	0.28589	3.13686
78	С	0.42516	-6.20353	-3.63201	114	С	6.79132	3.43906	-1.96499
79	С	-2.12452	-3.44406	-3.84743	115	С	5.90113	-0.17440	-2.58660
80	С	-1.19241	-5.51402	3.84634	116	С	5.64920	-0.40965	4.79149
81	С	-4.53385	-3.09630	-0.28545	117	Н	0.60805	-3.38559	2.47709
82	С	-5.35200	-2.39077	-1.37359	118	Н	2.05323	-3.99809	3.31374
83	С	-4.98628	-0.90532	-1.44166	119	Н	7.66749	-3.10387	-1.68254
84	С	-5.06989	-0.23481	-0.06494	120	Н	7.45543	-3.77656	-0.04626
85	С	-4.46557	-1.09493	1.07049	121	Н	7.26491	-2.01469	-0.34052
86	С	-4.93088	-0.62949	2.45302	122	Н	3.81239	-6.16187	-2.95946
87	С	-6.30551	-3.26720	-3.37867	123	Н	4.82000	-4.69136	-2.84153
88	С	-5.26344	0.40541	-3.43230	124	Н	3.05743	-4.55806	-3.13296
89	С	-7.04533	-1.65444	2.94015	125	Н	-3.24625	-3.77973	2.07265
90	С	-4.87946	2.14886	0.51995	126	Н	-2.83703	-5.50913	2.00027
91	С	-4.91526	3.36159	-0.43113	127	Н	1.17918	-6.01398	-4.39972
92	С	-3.50351	3.79345	-0.84060	128	Н	-0.57292	-6.16299	-4.08233

129	Н	0.59028	-7.21129	-3.22180	165	Н	3.33046	2.75227	-2.71380
130	Н	-1.09841	-3.23322	-4.17806	166	Н	3.16707	7.40977	3.02927
131	Н	-2.58475	-2.52586	-3.46758	167	Н	1.79315	6.64643	3.86941
132	Н	-2.70824	-3.79819	-4.70118	168	Н	1.67011	7.01828	2.13324
133	Н	-2.00158	-6.22382	4.07877	169	Н	3.60505	-0.67203	3.19120
134	Н	-0.69967	-5.23112	4.78044	170	Н	6.67481	4.01223	-2.88816
135	Н	-0.46976	-6.00841	3.18797	171	Н	7.35333	2.52197	-2.17159
136	Н	-4.54404	-1.32716	3.20912	172	Н	7.35804	4.04765	-1.24372
137	Н	-4.50924	0.36177	2.63906	173	Н	6.83902	-0.50355	-3.04210
138	Н	-6.83675	-2.33735	-3.61041	174	Н	5.43884	0.57730	-3.23519
139	Н	-6.99334	-3.94661	-2.85259	175	Н	5.23038	-1.03180	-2.49222
140	Н	-5.98686	-3.74733	-4.30711	176	Н	6.72109	-0.52297	4.97377
141	Н	-6.06823	0.75333	-4.08584	177	Н	5.16228	-1.39223	4.88683
142	Н	-4.61777	-0.27514	-4.00503	178	Н	5.22947	0.25803	5.56068
143	Н	-4.69228	1.27519	-3.09215	179	Н	5.68471	-2.13707	1.53001
144	Н	-6.64497	-2.08356	3.87105	180	Н	5.26406	-4.33226	0.58506
145	Н	-7.00939	-2.42415	2.16209	181	Н	3.19246	-3.12402	-1.29529
146	Н	-8.08271	-1.35461	3.11082	182	Н	2.56726	-4.98365	1.00704
147	Н	-2.34575	2.48824	3.52434	183	Н	2.13074	-1.96099	1.05707
148	Н	-1.11030	3.44857	2.67552	184	Н	1.06819	-6.04587	-0.08416
149	Н	-7.38647	2.15984	-0.93211	185	Н	-0.81772	-6.27113	-1.56280
150	Н	-7.49253	3.06347	-2.45494	186	Н	-0.92154	-3.23537	-1.75493
151	Н	-7.42794	3.94867	-0.90877	187	Н	-2.99568	-5.10366	-0.54949
152	Н	-2.60201	4.51688	-3.27083	188	Н	-1.06178	-3.25741	0.94454
153	Н	-3.52540	6.03693	-3.26074	189	Н	-4.85641	-4.13878	-0.18597
154	Н	-4.39902	4.48245	-3.31122	190	Н	-6.40756	-2.48042	-1.08093
155	Н	-2.28227	4.36405	5.20458	191	Н	-3.95580	-0.83254	-1.80642
156	Н	-2.81454	5.94891	4.58470	192	Н	-6.12707	-0.05279	0.16032
157	Н	-1.19641	5.32539	4.16142	193	Н	-3.37176	-1.01401	1.02236
158	Н	1.32434	4.41115	3.41552	194	Н	-5.87762	1.92303	0.90872
159	Н	2.69901	3.44943	2.81184	195	Н	-5.37486	4.18941	0.13132
160	Н	-0.13929	7.33268	-2.86574	196	Н	-3.07218	3.02790	-1.49783
161	Н	-0.68650	6.22328	-4.14500	197	Н	-2.82084	4.91805	0.84440
162	Н	1.02706	6.21847	-3.63423	198	Н	-2.18317	1.96720	1.10331
163	Н	3.31579	3.95968	-4.01371	199	Н	-1.14261	5.98544	0.14020
164	Н	1.82679	3.05332	-3.64944	200	Н	0.92822	6.27431	-1.05828

201	Н	1.03057	3.25583	-1.44522
202	Н	2.93506	5.03288	0.13434
203	Н	0.86387	3.12361	1.30998
204	Н	4.63959	4.00960	0.92709
205	Н	6.39509	2.46506	0.23704
206	Н	4.22881	0.86256	-1.18484
207	Н	5.91749	-0.05237	1.16315
208	Н	2.99345	0.77721	1.39279
209	Н	3.63459	0.99128	3.82259

S5. References

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian09; Revision C.01; Gaussian, Inc.; Wallingford CT; 2010.