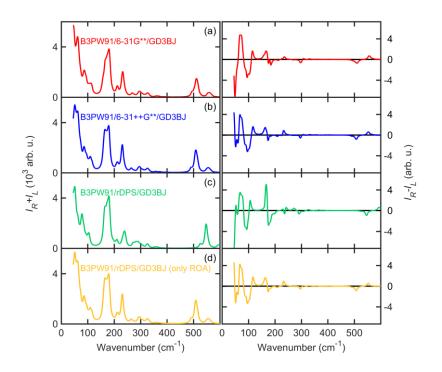
Supporting Information

Low-frequency Raman Optical Activity Provides Insight into Structure of Chiral Liquids


Pavel Michal, Josef Kapitán, Jiří Kessler and Petr Bouř

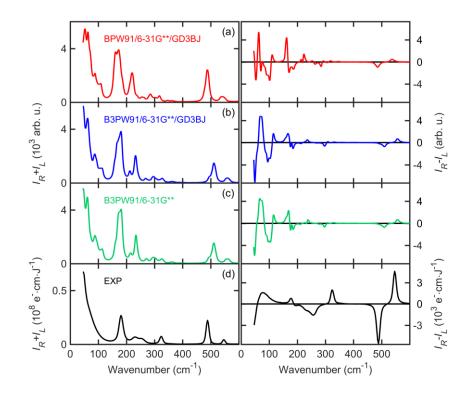
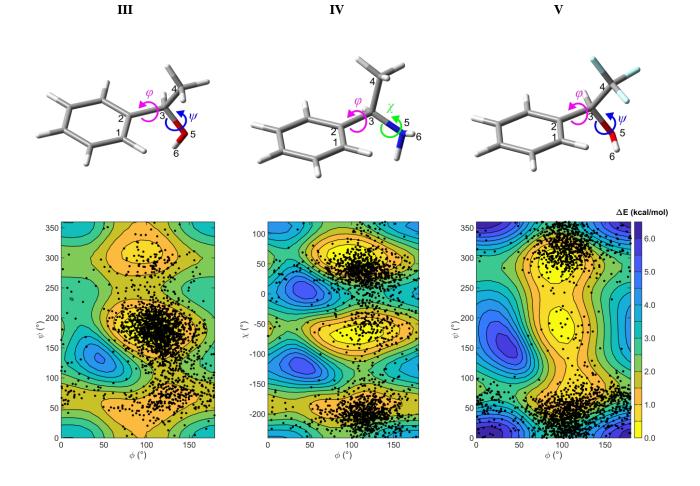
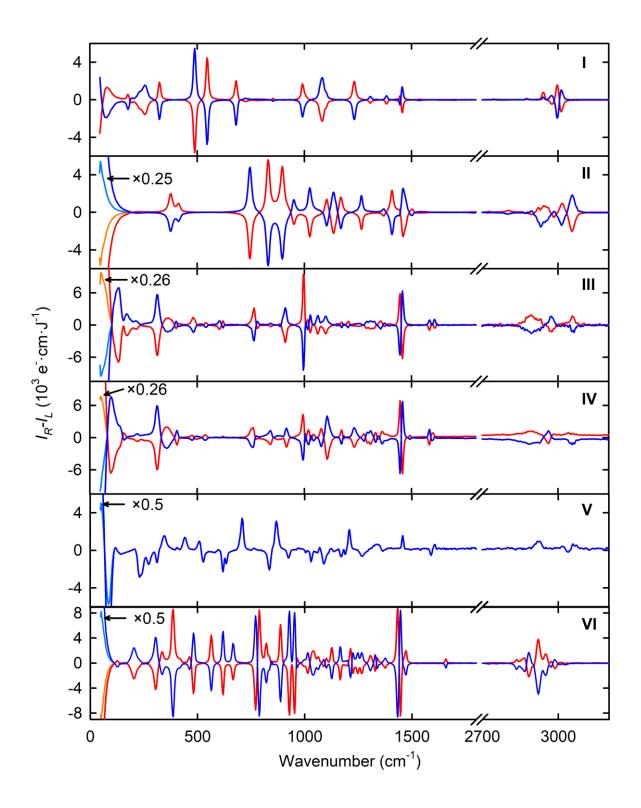
Contents

- Figure S1. Nitrile Raman and ROA intensities simulated with three basis sets.
- Figure S2. Nitrile Raman and ROA spectra calculated with two functionals.
- Figure S3. Conformer energies of III-V.
- Figure S4. Experimental ROA spectra for I–VI.
- Figure S5. Experimental CID ratios.
- Figure S6. Simulated Raman and ROA spectra, whole range.
- Figure S7. Calculated nitrile spectra with dimer, trimer and tetramer force fields.
- Figure S8. Calculated nitrile spectra, dependence on elementary cell size.
- Figure S9. Vibrational potential energies for III-V.

Table S1. Laser powers and measurement times.

- Table S2. Cells dimensions and densities for MD.
- Table S3. Low-frequency fundamental modes in III-V.

Figure S1. Raman and ROA spectra simulated for one snapshot of nitrile and three basis sets. For rDPS (d) the frequencies were calculated at the B3PW91/6-31++G**/COSMO(ACN)/GD3BJ level.

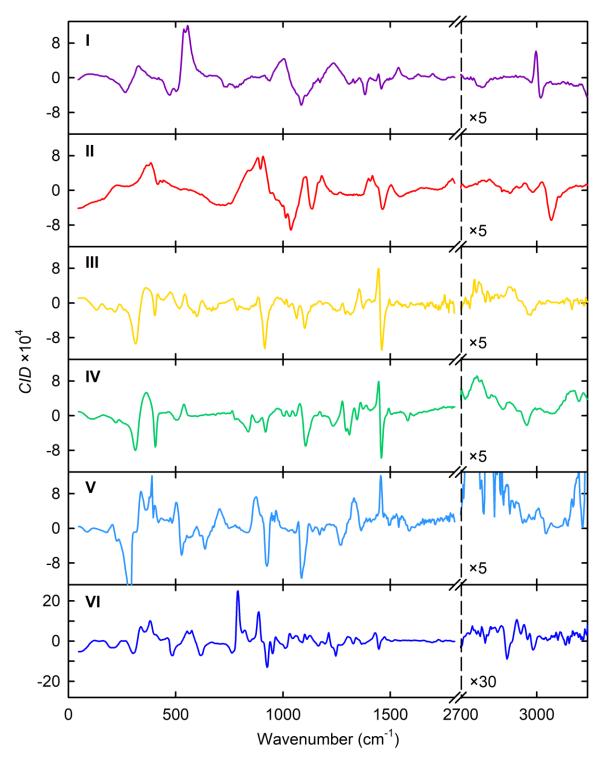
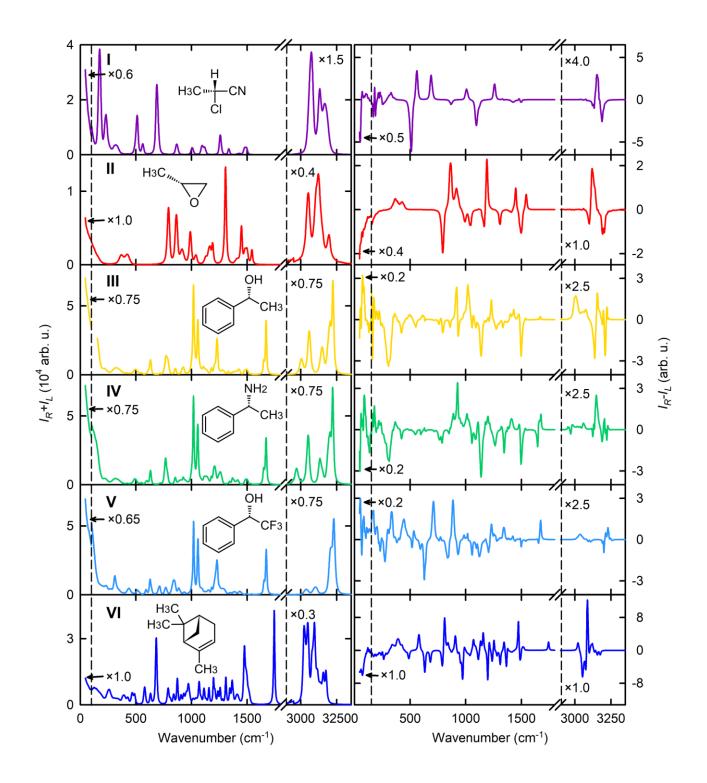
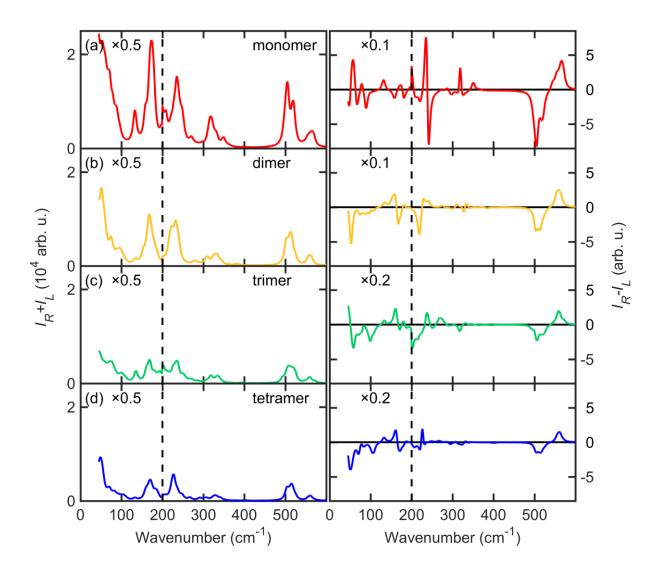
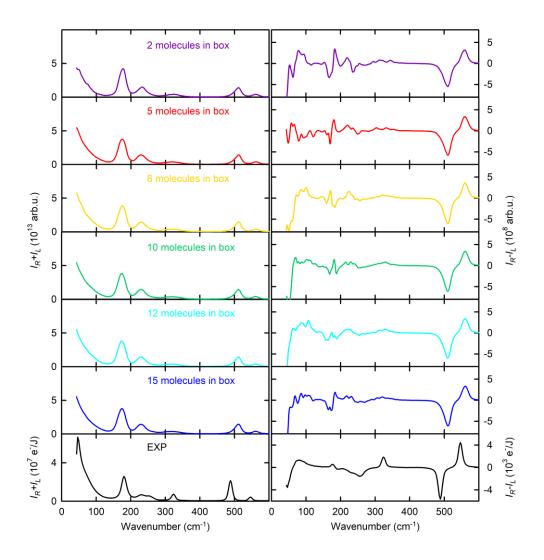

Figure S2. Nitrile Raman and ROA spectra calculated with the B3PW91 and BPW91 functionals, for B3PW91 with and without the GD3BJ dispersion correction, for the 6-31G** basis set and COSMO(ACN) solvent model.

Figure S3. Dependencies of the electronic energy on selected torsion angles calculated at the B3PW91/6-311++G**/COSMO(benzylalcohol) level (contour map) and coordinates from 200 MD snapshots (black dots). The describe phenyl rotation, $\varphi = C1-C2-C3-C4$, hydroxyl rotation, $\psi = C4-C3-O5-H6$, and amine rotation, $\chi = C2-C3-N5-H6$.

Figure S4. Experimental ROA spectra of the neat liquids, I 2-chloropropionitrile, II methyloxirane, III 1-phenylethanol, IV α -methylbenzylamine, V α -(trifluoromethyl)benzyl alcohol, and VI α -pinene. *R* and *S*-enantiomers are marked in red and blue, respectively.

Figure S5. Experimental CID (ROA/Raman) ratios of **I** (*R*)-2-chloropropionitrile, **II** (*R*)-(+)propylene oxide, **III** (*R*)-(+)-1-phenylethanol, **IV** (*R*)-(+)- α -methylbenzylamine, **V** (*S*)-(+)- α -(trifluoromethyl)benzyl alcohol, and **VI** (+)(1R,5R)- α -pinene.

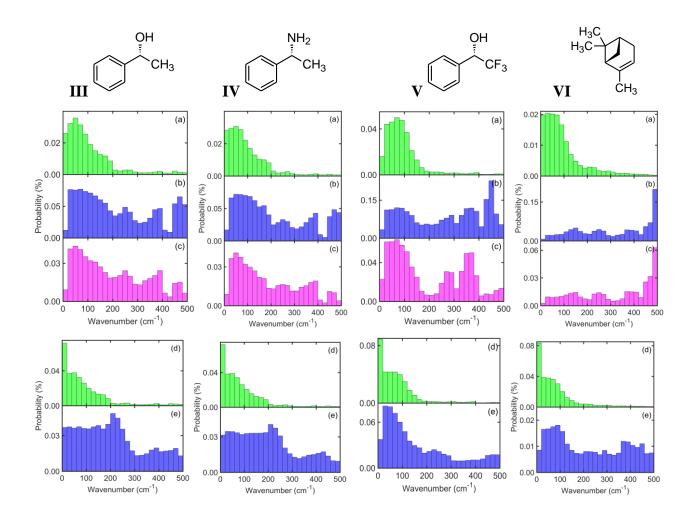

Figure S6. Raman and ROA spectra of I-VI simulated in the whole range, the crystal model.

Figure S7. Raman and ROA spectra of one nitrile MD snapshot (10 molecules in the elementary cell) simulated from force field constructed from monomers, dimers, trimers and tetramers.

Figure S8. Calculated Raman and ROA nitrile spectra, using elementary cells containing 2, 5, 8, 10, 12 and 15 molecules, for 200 snapshots.

Figure S9. Relative vibrational potential energy distribution (PED) of intermolecular motions related to two (stretching (a), bending (b), torsion (c)) and one (translations (d), rotations (e)) molecule, for **III-V**.

PEDs of individual coordinates were calculated by the following procedure.

1) Transformation matrix **B** was defined, relating internal (I_i) and Cartesian (r_λ) coordinates, $I_i = \sum_{\lambda} B_{\lambda i} r_{\lambda}$. Using **B**, force field elements f_{ij} in the internal coordinates were calculated.

2) Within the harmonic approximation, Cartesian force field was normalized, so that the **S** matrix relating Cartesian and normal mode (Q_J) coordinates was obtained, $Q_J = \sum_{\lambda} S_{\lambda J} r_{\lambda}$

3) Relative energy contribution of coordinate
$$I_i$$
 in mode J was calculated as
$$PED_{J_i} = \frac{A_{J_i}}{\sum_i A_{J_i}} \times 100\%$$
, where $A_{J_i} = b_{J_i}^2 f_{ii} \omega_J^{-1}$, $b_{J_i} = \sum_{\lambda} S_{\lambda J} B_{\lambda i} \sqrt{m_{\lambda}}$, ω_J is the normal mode

frequency, m_{λ} is atomic mass. In the graphs, PED values were averaged over the snapshots and normal modes in a wavenumber interval.

Compound	Enantiomer	<i>P</i> (mW)	<i>t</i> (h)
I nitrile	R	83	9.7
	S	83	13.2
II methyloxirane	R	540	34.6
	R @ water	338	5.5
	S	540	19.3
III phenylethanol	R	86	1.9
	S	82	2.9
IV benzylamine	R	69	7.8
	S	69	8.5
V 3F-benzyl	S	114	11.4
	R	266	5.5
VI α-pinene	S	266	5.5

<u>Table S1</u> Laser powers at the sample *P* and total accumulation times *t* used in ROA measurements.

Table S2. Dimensions of the elementary cells (10 molecules in the box) and densities used in the calculations

	Liquid	Box size (Å)	ho (g/ml)	COSMO Solvent
Ι	nitrile	11.37	1.012	acetonitrile
II	methyloxirane	10.39	0.859	tetrahydrofuran
III	phenylethanol	12.61	1.012	benzylalcohol
IV	benzylamine	12.89	0.940	benzylalcohol
\mathbf{V}	3F-benzyl	13.13	1.293	benzylalcohol
VI	α-pinene	13.82	0.858	cyclohexane

v / cm-1	v / cm-1 modes		
III:			
36	Phe rotation		
128	Me and Phe wagging		
212	Me and Phe scissoring		
266	Me and OH rotation		
283	Me and OH rotation		
305	deloc. def.		
372	deloc. def.		
411	Phe out of plane		
482	deloc. def.		
IV:			
29	Phe rotation		
129	Me and Phe wagging		
214	Me and Phe scissoring		
268	Me rotation		
303	deloc. def., NH ₂ rotation		
360	deloc. def.		
411	Phe out of plane		
480	NH ₂ and Me wagging		
V:			
27	Phe rotation		
64	CF ₃ rotation, Phe wagging		
99	deloc. def.		
199	OH rotation		
233	deloc. def.		
290	deloc. def.		
308	deloc. def.		
335	deloc. def.		
412	Phe out of plane		
428	deloc. def.		