Supplementary Information

Liquid-like properties of cyclopentadienyl complexes of barium: Molecular dynamics simulations of nanoscale droplets

Hye Ree Hyun^{*a*†}, Jungim Han^{*b*†}, Juhyung Lim^{*b*}, Young Jae Park^{*b*}, Byoungki Choi^{*b*},

Chul Baik^{b*}, and Jun Soo Kim^{a*}

^aDepartment of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea

^bOrganic Material Lab, Samsung Advanced Institute of Technology, Suwon, Gyeonggi-do 16678, Republic of Korea

* Corresponding author: jkim@ewha.ac.kr, chul.baik@samsung.com

† These authors contributed equally to this work

Contents

Fig. S1. Comparisons of radial density profiles around a center-of-mass of each droplet.

Fig. S2. Comparisons of structural and dynamic properties of a molecular liquid of the $(Me_5C_5)_2Ba$ compound calculated during different simulation durations.

Fig. S3. Comparisons of structural and dynamic properties of molecular liquids of the $(Me_5C_5)_2Ba$ compound calculated from simulations with different numbers of molecules composing the droplet.

Fig. S4. Probability distribution functions of the distance between a central barium atom and a ligand centroid in each molecule.

Fig. S1. Comparisons of radial density profiles around a center-of-mass of each droplet. The density profiles are fitted to hyperbolic tangent functions, $\rho(r) \sim \tanh \frac{(r_d - r)}{\delta}$, to determine the droplet radius r_d as an inflection point of the density decrease to zero and the interfacial thickness 2δ . The density profiles are shifted vertically for visual clarity.

Fig. S3. Comparisons of structural and dynamic properties of nanoscale droplets of $(Me_5C_5)_2Ba$ calculated from simulations with different numbers of molecules composing the droplet. (A) Radial distribution functions (RDF) between central Ba atoms calculated from simulations with 32 to 160 molecules N_{mol} . (B) Enlarged view of the first RDF peak presented in (A). (C) and (D) Radial probability distributions of particle displacements within time intervals of $t_0 = 25$ ps and 75 ps, respectively. These were calculated for different N_{mol} as indicated in the figure. $G_s(r, t_0)$ is the self part of the van Hove correlation function, where r is particle displacement and t_0 is the time interval for displacements. The plots in (A)-(D) for different N_{mol} converge as N_{mol} increases. We chose $N_{mol} = 96$ for the simulations of nanoscale droplets of various complexes presented in the main text, because the results of $N_{mol} = 96$ agree reasonably well with those of larger droplets while the computation is fast enough for each simulation to be done within about a month. For instance, the 1-ns simulation of 96 molecules of ($^{i}Pr_5C_5$)₂Ba took 37 days using AMD Ryzen 9 3900X 12-CPU 24-thread processors.

Fig. S4. Probability distribution functions of the distance between a central barium atom and a ligand centroid in each molecule.