Electronic Supplementary Information

Existence of Noble Gas Inserted Phosphorus Fluorides: FNgPF₂ and FNgPF₄ with Ng–P Covalent Bond (Ng = Ar, Kr, Xe and Rn)

Subrahmanya Prasad Kuntar^{§,‡}, Ayan Ghosh^{†,‡}, and Tapan K. Ghanty^{§,‡,*}

[§]Bio Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, INDIA.
[†]Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, INDIA.
[‡]Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, INDIA.

List of Figures:

Figure S1. The plots of deformation density $(\Delta\rho(r))$ for FXePF₂ and FXePF₄ molecules considering FXe as one fragment and PF₂ or PF₄ as another fragment at the B3LYP-D3/TZ2P level of theory; in FNgPF₂ molecules, $\Delta\rho_{1\alpha}(r)$ and $\Delta\rho_{1\beta}(r)$ correspond to (FNg \leftarrow PF_n) σ donation and (FNg \rightarrow PF_n) σ -back donation, respectively; $\Delta\rho_{2\alpha}(r)$, $\Delta\rho_{3\alpha}(r)$, $\Delta\rho_{2\beta}(r)$, and $\Delta\rho_{3\beta}(r)$ refer to the (FNg \rightarrow PF_n) π -back donations; $\Delta\rho_{4\alpha}(r)$ and $\Delta\rho_{4\beta}(r)$ refers to (FNg \rightarrow PF_n) σ -back donation. In FNgPF₄ systems, $\Delta\rho_{1\alpha}(r)$ and $\Delta\rho_{1\beta}(r)$ correspond to (FNg \leftarrow PF_n) σ - donation and (FNg \rightarrow PF_n) σ -back donation, respectively; $\Delta\rho_{2\alpha}(r)$ represents (FNg \rightarrow PF_n) σ -back donation; $\Delta\rho_{3\alpha}(r)$, $\Delta\rho_{4\alpha}(r)$, $\Delta\rho_{2\beta}(r)$, and $\Delta\rho_{3\beta}(r)$ correspond to the (FNg \rightarrow PF_n) π -back donations. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

Figure S2. The plots of deformation density $(\Delta\rho(r))$ for FXePF₂ and FXePF₄ molecules considering FXe⁻ as one fragment and PF₂⁺ or PF₄⁺ as another fragment at the B3LYP-D3/TZ2P level of theory, where the deformation density, $\Delta\rho_1(r)$ corresponds to the (FNg⁻ \rightarrow PF_n⁺) σ donation; $\Delta\rho_2(r)$ and $\Delta\rho_3(r)$ refer to (FNg⁻ \rightarrow PF_n⁺) π -donation; $\Delta\rho_4(r)$ represents the (FNg⁻ \leftarrow PF_n⁺) σ -back donation; $\Delta\rho_5(r)$ corresponds to (FNg⁻ \leftarrow PF_n⁺) π -back donation; all other $\Delta\rho_i(r)$ (i > 5) contributes negligibly. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

Figure S3. The plots of deformation density $(\Delta\rho(\mathbf{r}))$ for FXePF₂ and FXePF₄ molecules considering FXe⁺ as one fragment and PF₂⁻ or PF₄⁻ as another fragment at the B3LYP-D3/TZ2P level of theory, where the deformation density, $\Delta\rho_1(\mathbf{r})$ corresponds to the (FNg⁺ \leftarrow PF_n⁻) σ donation; $\Delta\rho_2(\mathbf{r})$ and $\Delta\rho_3(\mathbf{r})$ refer to (FNg⁺ \rightarrow PF_n⁻) π -back donations; $\Delta\rho_4(\mathbf{r})$ represents the σ back donation (FNg⁺ \rightarrow PF_n⁻); $\Delta\rho_5(\mathbf{r})$ corresponds to (FNg⁺ \rightarrow PF_n⁻) π -back donation; all other $\Delta\rho_i(\mathbf{r})$ (i > 5) contributes negligibly. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

List of Tables:

Table S1. Calculated F–Ng, Ng–P Bond Length (R in Å) and F–Ng–P Bond Angles (θ in Degree) Values in FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules using B3LYP and MP2 Methods with the DEF2 Basis Set and CCSD(T) Method with AVTZ Basis Set.

Table S2. Calculated Values of the Mullikan Charges of Constituent Atoms in $FNgPF_2$ and $FNgPF_4$ (Ng = Ar, Kr, Xe and Rn) Molecules Using the B3LYP and MP2 Methods with DEF2 Basis Set.

Table S3. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering F⁻ as One Fragment and NgPF₂⁺ or NgPF₄⁺ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

Table S4. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg as One Fragment and PF₂ or PF₄ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

Table S5. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg⁻ as One Fragment and PF_2^+ or PF_4^+ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

Table S6. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg⁺ as One Fragment and PF_2^- or PF_4^- as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹. **Figure S1.** The plots of deformation density $(\Delta\rho(r))$ for FXePF₂ and FXePF₄ molecules considering FXe as one fragment and PF₂ or PF₄ as another fragment at the B3LYP-D3/TZ2P level of theory; in FNgPF₂ molecules, $\Delta\rho_{1\alpha}(r)$ and $\Delta\rho_{1\beta}(r)$ correspond to (FNg \leftarrow PF_n) σ donation and (FNg \rightarrow PF_n) σ -back donation, respectively; $\Delta\rho_{2\alpha}(r)$, $\Delta\rho_{3\alpha}(r)$, $\Delta\rho_{2\beta}(r)$, and $\Delta\rho_{3\beta}(r)$ refer to the (FNg \rightarrow PF_n) π -back donations; $\Delta\rho_{4\alpha}(r)$ and $\Delta\rho_{4\beta}(r)$ refers to (FNg \rightarrow PF_n) σ -back donation. In FNgPF₄ systems, $\Delta\rho_{1\alpha}(r)$ and $\Delta\rho_{1\beta}(r)$ correspond to (FNg \leftarrow PF_n) σ donation and (FNg \rightarrow PF_n) σ -back donation, respectively; $\Delta\rho_{2\alpha}(r)$ represents (FNg \rightarrow PF_n) σ back donation; $\Delta\rho_{3\alpha}(r)$, $\Delta\rho_{4\alpha}(r)$, $\Delta\rho_{2\beta}(r)$, and $\Delta\rho_{3\beta}(r)$ correspond to the (FNg \rightarrow PF_n) π -back donations. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

 $FXePF_2$ ($FXe + PF_2$)

 $\Delta E_{4\beta}^{orb} = -1.3$

FXePF₄ (FXe + PF₄)

 $\Delta E_{2\beta}{}^{orb} = -1.1$

 $\Delta E_{3\beta}{}^{orb} = -1.1$

 $\Delta E_{1\beta}^{orb} = -28.9$

Figure S2. The plots of deformation density $(\Delta\rho(r))$ for FXePF₂ and FXePF₄ molecules considering FXe⁻ as one fragment and PF₂⁺ or PF₄⁺ as another fragment at the B3LYP-D3/TZ2P level of theory, where the deformation density, $\Delta\rho_1(r)$ corresponds to the (FNg⁻ \rightarrow PF_n⁺) σ -donation; $\Delta\rho_2(r)$ and $\Delta\rho_3(r)$ refer to (FNg⁻ \rightarrow PF_n⁺) π -donation; $\Delta\rho_4(r)$ represents the (FNg⁻ \leftarrow PF_n⁺) σ -back donation; $\Delta\rho_5(r)$ corresponds to (FNg⁻ \leftarrow PF_n⁺) π -back donation; all other $\Delta\rho_i(r)$ (i > 5) contributes negligibly. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

 $FXePF_2 (FXe^- + PF_2^+)$

 $FXePF_4 (FXe^- + PF_4^+)$

Figure S3. The plots of deformation density $(\Delta\rho(r))$ for FXePF₂ and FXePF₄ molecules considering FXe⁺ as one fragment and PF₂⁻ or PF₄⁻ as another fragment at the B3LYP-D3/TZ2P level of theory, where the deformation density, $\Delta\rho_1(r)$ corresponds to the (FNg⁺ \leftarrow PF_n⁻) σ -donation; $\Delta\rho_2(r)$ and $\Delta\rho_3(r)$ refer to (FNg⁺ \rightarrow PF_n⁻) π -back donations; $\Delta\rho_4(r)$ represents the σ -back donation (FNg⁺ \rightarrow PF_n⁻); $\Delta\rho_5(r)$ corresponds to (FNg⁺ \rightarrow PF_n⁻) π -back donation; all other $\Delta\rho_i(r)$ (i > 5) contributes negligibly. The energy of associated orbital terms is provided in kcal mol⁻¹. (An isovalue of 0.001 is used.)

 $FXePF_2 (FXe^+ + PF_2^-)$

Table S1. Calculated F–Ng, Ng–P Bond Length (R in Å) and F–Ng–P Bond Angles (θ in Degree) Values in FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules using B3LYP and MP2 Methods with the DEF2 Basis Set and CCSD(T) Method with AVTZ Basis Set.

Mologulo	Doromotors	Mathad	A	r	K	Kr	X	Ke	Rn		
Molecule	I al alletel s	Methou	Min	TS	Min	TS	Min	TS	Min	TS	
		MP2	2.051	2.291	2.095	2.368	2.164	2.423	2.227	2.471	
	R(F-Ng)	B3LYP	2.135	2.474	2.159	2.516	2.198	2.470	2.252	2.499	
		CCSD(T)	2.178	^a	2.112	^a	2.162	^a	2.226	^a	
		MP2	2.266	2.247	2.413	2.379	2.592	2.545	2.690	2.630	
FNgPF2	R(Ng-P)	B3LYP	2.435	2.356	2.527	2.461	2.675	2.655	2.765	2.720	
		CCSD(T)	2.203	^a	2.479	^a	2.626	^a	2.725	^a	
	θ(F-Ng-P)	MP2	177.5	118.6	178.1	110.5	178.7	103.5	178.8	99.4	
		B3LYP	177.0	104.1	178.3	98.5	179.0	98.9	178.8	95.3	
		CCSD(T)	178.9	^a	177.2	^a	178.4	^a	178.5	^a	
	R(F-N σ)	MP2	2.074	2.344	2.086	2.422	2.145	2.477	2.206	2.515	
		B3LYP	2.122	2.450	2.137	2.531	2.169	2.531	2.222	2.553	
FN9PF4 ^b	R(Ng-P)	MP2	2.255	2.436	2.402	2.557	2.588	2.675	2.688	2.740	
1119114		B3LYP	2.403	2.697	2.500	2.807	2.657	2.800	2.749	2.845	
	$\theta(\mathbf{F}-\mathbf{N}\mathbf{g}-\mathbf{P})$	MP2	180.0	134.0	180.0	120.2	180.0	108.1	180.0	102.6	
		B3LYP	180.0	114.5	180.0	105.2	180.0	100.0	180.0	96.1	

 a It has not been possible to optimize the transition state of FNgPF₂ molecules by using CCSD(T)/AVTZ level of theory.

^bIt has not been possible to optimize the minima and the transition state geometry of FNgPF₄ molecules by employing CCSD(T) method with AVTZ basis set.

FNgPF ₂	Methods	A	r	K	Kr	Х	Ke (Rn			
rngi rz	Wiethous	Min	TS	Min	TS	Min	TS	Min	TS		
Fa	MP2	-0.733	-0.880	-0.698	-0.872	-0.654	-0.825	-0.664	-0.826		
-	B3LYP	-0.651	-0.623	-0.666	-0.681	-0.634	-0.744	-0.640	-0.754		
Νσ	MP2	0.390	0.308	0.590	0.406	0.624	0.499	0.679	0.549		
ng	B3LYP	0.299	0.123	0.464	0.225	0.548	0.411	0.611	0.469		
Р	MP2	0.728	0.858	0.529	0.771	0.477	0.648	0.433	0.612		
1	B3LYP	0.698	0.738	0.582	0.699	0.505	0.616	0.450	0.577		
гb	MP2	-0.193	-0.159	-0.210	-0.169	-0.224	-0.176	-0.224	-0.178		
•	B3LYP	-0.173	-0.136	-0.191	-0.146	-0.209	-0.163	-0.211	-0.169		
FNgPF4	Methods	A	r	K	Kr	Х	le	F	Rn		
1.1.81.1.4		Min	TS	Min	TS	Min	TS	Min	TS		
F ^a	MP2	-0.782	-0.912	-0.699	-0.898	-0.638	-0.855	-0.652	-0.853		
•	B3LYP	-0.684	-0.738	-0.669	-0.760	-0.618	-0.776	-0.625	-0.784		
Ng	MP2	0.266	0.147	0.406	0.211	0.484	0.333	0.594	0.411		
615	B3LYP	0.248	0.098	0.343	0.119	0.445	0.261	0.555	0.339		
Р	MP2	1.376	1.332	1.220	1.278	1.134	1.142	1.017	1.102		
	B3LYP	1.276	1.140	1.240	1.160	1.162	1.116	1.043	1.098		
Fb	MP2	-0.184	-0.119	-0.203	-0.122	-0.218	-0.127	-0.210	-0.137		
Ľ		0 1 0 4	0.102	0.000	0 100	0 222	0 1 2 0	0.217	0 122		

Table S2. Calculated Values of the Mullikan Charges of Constituent Atoms in FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe and Rn) Molecules Using the B3LYP and MP2 Methods with DEF2 Basis Set.

^aIt corresponds to the fluorine (F) atom that is bonded to the noble gas (Ng) atom.

^bIt represents the fluorine (F) atom that is bonded to the phosphorous (P) atom.

Molecule	$\Delta E^{\text{Pauli}a}$	$\Delta E^{elstat a}$	$\Delta E_{T}^{orb a}$	$\Delta E_1^{\operatorname{orb} b}$	$\Delta E_2^{\operatorname{orb} b}$	$\Delta E_3^{\operatorname{orb} b}$	ΔE4 ^{orb b}	ΔE5 ^{orb b}	ΔEres ^{orb b}	$\Delta E^{\operatorname{disp} a}$	ΔE^{int}
FArPF ₂	76.2	-145.6	-62.3	-53.5	-2.5	-2.4	-1.7	-0.5	-1.7	-0.2	-131.9
		(70.0)	(29.9)	(85.9)	(4.0)	(3.9)	(3.0)	(0.8)	(2.7)	(0.1)	
FKrPF ₂	94.1	-161.8	-71.5	-58.9	-3.7	-3.6	-2.6	-0.5	-2.2	-0.1	-139.3
		(69.3)	(30.6)	(82.4)	(5.2)	(5.0)	(3.6)	(0.7)	(3.1)	(0.0)	
FXePF ₂	116.4	-183.0	-81.5	-64.7	-5.1	-5.0	-3.9	-0.7	-2.1	-0.1	-148.2
		(69.2)	(30.8)	(79.4)	(6.3)	(6.1)	(4.8)	(0.9)	(2.6)	(0.0)	
FRnPF ₂	110.0	-184.4	-76.3	-60.0	-4.8	-4.7	-3.9	-0.6	-2.3	-0.1	-150.8
		(70.7)	(29.3)	(78.6)	(6.3)	(6.2)	(5.1)	(0.8)	(3.0)	(0.0)	
FArPF ₄	68.9	-145.0	-55.5	-46.6	-2.3	-2.3	-1.6	^c	-2.7	-0.2	-131.8
		(72.2)	(27.7)	(84.0)	(4.1)	(4.1)	(2.9)		(4.9)	(0.1)	
FKrPF ₄	94.2	-167.8	-71.0	-57.9	-3.6	-3.6	-2.6	^c	-3.3	-0.1	-144.8
		(70.2)	(29.7)	(81.5)	(5.1)	(5.1)	(3.7)		(4.6)	(0.0)	
FXePF ₄	119.3	-193.1	-84.1	-66.6	-5.1	-5.1	-3.9	-0.9	-2.5	-0.1	-158.0
		(69.6)	(30.3)	(79.2)	(6.1)	(6.1)	(4.6)	(1.1)	(3.0)	(0.0)	
FRnPF ₄	112.6	-195.5	-78.9	-61.8	-4.9	-4.9	-3.9	-0.9	-2.5	-0.1	-162.0
		(71.2)	(28.7)	(78.3)	(6.2)	(6.2)	(4.9)	(1.1)	(3.2)	(0.0)	

Table S3. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering F⁻ as One Fragment and NgPF₂⁺ or NgPF₄⁺ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

^aThe values within the parentheses are in percentage and show the contribution towards the total attractive interaction $\Delta E^{\text{elstat}} + \Delta E_{\text{T}}^{\text{orb}} + \Delta E^{\text{disp}}$. ^bThe values within parentheses are the percentage contribution towards the total orbital interaction $\Delta E_{\text{T}}^{\text{orb}}$.

Molecule	$\Delta E^{\text{Pauli}a}$	$\Delta E^{elstat a}$	$\Delta E_T^{orb a}$	ΔΕ	1 ^{orb}	ΔΕ	2 ^{orb}	ΔE3 ^{orb}		$\Delta E_4^{\mathrm{orb}}$		ΔEres ^{orb b}	$\Delta E^{\operatorname{disp} a}$	ΔE^{int}
				$\Delta E_{\alpha}^{\operatorname{orb} b}$	$\Delta E_{\beta}^{\mathrm{orb}b}$	$\Delta E_{\alpha}^{\operatorname{orb} b}$	$\Delta E_{\beta}^{\operatorname{orb} b}$	$\Delta E_{\alpha}^{\operatorname{orb} b}$	$\Delta E_{\beta}^{\mathrm{orb} \ b}$	$\Delta E_{\alpha}^{\operatorname{orb} b}$	$\Delta E_{\beta}^{\operatorname{orb} b}$			
FArPF ₂	134.5	-63.4	-77.2	-56.4	-8.7	-2.5	-1.5	-1.5	-1.3	-1.7	-1.6	-2.0	-0.9	-7.0
		(44.8)	(54.6)	(73.1)	(11.3)	(3.2)	(1.9)	(1.9)	(1.7)	(2.2)	(2.1)	(2.6)	(0.6)	
FKrPF ₂	127.4	-66.2	-76.4	-49.5	-15.4	-2.0	-1.4	-1.6	-1.5	-1.5	-1.4	-2.1	-0.8	-16.0
		(46.2)	(53.3)	(64.8)	(20.2)	(2.6)	(1.8)	(2.1)	(2.0)	(2.0)	(1.8)	(2.7)	(0.6)	
FXePF ₂	123.7	-68.9	-76.2	-41.7	-24.0	-1.8	-1.4	-1.6	-1.4	-1.3	-1.3	-1.7	-0.9	-22.2
		(47.2)	(52.2)	(54.7)	(31.5)	(2.4)	(1.8)	(2.1)	(1.8)	(1.7)	(1.7)	(2.2)	(0.6)	
FRnPF ₂	113.8	-67.1	-69.2	-34.4	-25.7	-1.4	-1.3	-1.5	-1.3	^c	-1.1	-2.5	-1.0	-23.5
		(48.9)	(50.4)	(49.7)	(37.1)	(2.0)	(1.9)	(2.2)	(1.9)		(1.6)	(3.6)	(0.7)	
FArPF ₄	148.2	-71.5	-89.8	-67.4	-10.8	-2.9	-1.1	-1.3	-1.1	-1.3	-0.8	-3.1	-1.2	-14.3
		(44.0)	(55.3)	(75.1)	(12.0)	(3.2)	(1.2)	(1.4)	(1.2)	(1.4)	(0.9)	(3.5)	(0.7)	
FKrPF ₄	132.5	-70.0	-82.4	-52.8	-18.8	-2.1	-1.2	-1.4	-1.2	-1.4	^c	-3.5	-1.0	-21.0
		(45.6)	(53.7)	(64.1)	(22.8)	(2.5)	(1.5)	(1.7)	(1.5)	(1.7)		(4.2)	(0.7)	
FXePF ₄	120.7	-68.2	-78.0	-40.1	-28.9	-1.6	-1.1	-1.2	-1.1	-1.2	^c	-2.8	-1.2	-26.7
		(46.3)	(52.9)	(51.4)	(37.1)	(2.1)	(1.4)	(1.5)	(1.4)	(1.5)		(3.6)	(0.8)	
FRnPF ₄	108.8	-65.2	-70.4	-31.6	-31.3	-1.3	-1.0	-1.0	-1.0	-1.0	^c	-2.2	-1.4	-28.1
		(47.6)	(51.4)	(44.9)	(44.5)	(1.8)	(1.4)	(1.4)	(1.4)	(1.4)		(3.1)	(1.0)	

Table S4. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg as One Fragment and PF₂ or PF₄ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

^aThe values within the parentheses are in percentage and show the contribution towards the total attractive interaction $\Delta E^{elstat} + \Delta E_T^{orb} + \Delta E^{disp}$.

^bThe values within parentheses are the percentage contribution towards the total orbital interaction ΔE_T^{orb} ;

Molecule	$\Delta E^{\text{Pauli }a}$	$\Delta \mathbf{E}^{\text{elstat }a}$	$\Delta E_{T}^{orb a}$		$\Delta \mathbf{E}_{\mathbf{i}}^{\operatorname{orb} b}$												$\Delta E^{\operatorname{disp} a}$	ΔE^{int}
				ΔE_1	ΔE_2	ΔE_3	ΔE_4	ΔE_5	ΔE_6	ΔE_7	ΔE_8	ΔE9	ΔE_{10}	ΔE_{11}	ΔE_{12}	ΔE_{res}		
FArPF ₂	97.3	-136.9	-116.6	-99.0	-5.3	-4.9	-2.5	-2.8	-0.2	-0.3	-0.6	^c	^c	^c	^c	-1.0	-0.9	-157.2
		(53.8)	(45.8)	(84.9)	(4.5)	(4.2)	(2.1)	(2.4)	(0.2)	(0.3)	(0.5)					(0.9)	(0.4)	
FKrPF ₂	107.8	-149.2	-127.4	-110.8	-5.1	-5.0	-1.0	-3.1	-0.2	-0.2	-0.6	-0.2	^c	^c	^c	-1.2	-0.8	-169.6
		(53.8)	(45.9)	(87.0)	(4.0)	(3.9)	(0.8)	(2.4)	(0.2)	(0.2)	(0.5)	(0.2)				(0.9)	(0.3)	
FXePF ₂	128.1	-162.6	-145.3	-129.3	-5.4	-5.1	-2.2	-1.3	-0.5	-0.2	-0.2	-0.3	-0.1	-0.2	^c	-0.5	-0.9	-180.6
		(52.7)	(47.1)	(89.0)	(3.7)	(3.5)	(1.5)	(0.9)	(0.3)	(0.1)	(0.1)	(0.2)	(0.1)	(0.1)		(0.3)	(0.3)	
FRnPF ₂	132.3	-165.5	-148.7	-134.3	-5.1	-4.7	-1.8	-1.1	-0.4	-0.2	-0.2	-0.2	-0.1	-0.1	^c	-0.5	-1.0	-182.9
		(52.5)	(47.2)	(90.3)	(3.4)	(3.2)	(1.2)	(0.7)	(0.3)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)		(0.3)	(0.3)	
FArPF ₄	94.8	-142.2	-110.9	-93.2	-3.7	-4.4	-4.4	-2.0	-0.3	-0.3	-0.5	-0.4	^c	^c	^c	-1.7	-1.2	-159.5
		(55.9)	(43.6)	(84.0)	(3.3)	(4.0)	(4.0)	(1.8)	(0.3)	(0.3)	(0.5)	(0.4)				(1.5)	(0.5)	
FKrPF ₄	105.8	-159.7	-130.4	-113.2	-4.2	-4.2	-3.0	-1.7	-0.2	-0.2	-0.4	-0.5	-0.5	^c	^c	-2.3	-1.1	-185.3
		(54.8)	(44.8)	(86.8)	(3.2)	(3.2)	(2.3)	(1.3)	(0.2)	(0.2)	(0.3)	(0.4)	(0.4)			(1.8)	(0.4)	
FXePF ₄	124.7	-176.3	-153.5	-137.5	-4.2	-4.2	-2.4	-1.4	-0.3	-0.3	-0.4	-0.5	-0.5	-0.3	-0.3	-1.2	-1.2	-206.2
		(53.3)	(46.4)	(89.6)	(2.7)	(2.7)	(1.6)	(0.9)	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.2)	(0.2)	(0.8)	(0.4)	
FRnPF ₄	129.4	-181.1	-158.8	-144.6	-3.8	-3.8	-2.3	-1.0	-0.3	-0.3	-0.4	-0.4	-0.4	-0.3	-0.3	-0.9	-1.4	-211.8
		(53.1)	(46.5)	(91.1)	(2.4)	(2.4)	(1.4)	(0.6)	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.2)	(0.2)	(0.6)	(0.4)	

Table S5. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg⁻ as One Fragment and

PF₂⁺ or PF₄⁺ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

^aThe values within the parentheses are in percentage and show the contribution towards the total attractive interaction $\Delta E^{elstat} + \Delta E_T^{orb} + \Delta E^{disp}$.

^bThe values within parentheses are the percentage contribution towards the total orbital interaction ΔE_T^{orb} .

Molecule	$\Delta E^{\text{Pauli }a}$	$\Delta E^{elstat a}$	$\Delta E_{T}^{orb a}$		$\Delta \mathbf{E_i}^{orb \ b}$												$\Delta E^{\operatorname{disp} a}$	ΔE^{int}
				ΔE_1	ΔE_2	ΔE_3	ΔE_4	ΔE_5	ΔE_6	ΔE_7	ΔE_8	ΔΕ9	ΔE ₁₀	ΔE ₁₁	ΔE_{12}	ΔEres		
FArPF ₂	231.1	-254.0	-308.7	-297.3	-2.9	-0.2	-1.0	-2.0	-1.3	-1.4	-0.3	-0.4	-0.3	-0.3	-0.3	-1.0	-0.9	-332.5
		(45.1)	(54.8)	(96.3)	(0.9)	(0.1)	(0.3)	(0.6)	(0.4)	(0.5)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.3)	(0.2)	
FKrPF ₂	226.4	-268.1	-262.8	-251.3	-2.9	-0.7	-1.1	-1.2	-0.9	-1.6	-0.5	-0.5	-0.2	-0.3	-0.3	-1.3	-0.8	-305.4
		(50.4)	(49.4)	(95.6)	(1.1)	(0.3)	(0.4)	(0.5)	(0.3)	(0.6)	(0.2)	(0.2)	(0.1)	(0.1)	(0.1)	(0.5)	(0.2)	
FXePF ₂	223.9	-278.5	-215.7	-204.0	-1.0	-3.2	-1.1	-0.9	-0.7	-1.7	-0.6	-0.5	-0.1	-0.3	-0.3	-1.3	-0.9	-271.2
		(56.3)	(43.6)	(94.6)	(0.5)	(1.5)	(0.5)	(0.4)	(0.3)	(0.8)	(0.3)	(0.2)	(0.0)	(0.1)	(0.1)	(0.6)	(0.2)	
FRnPF ₂	208.4	-280.4	-185.9	-174.6	-1.1	-3.2	-1.1	-0.8	-0.7	-1.5	-0.6	-0.5	-0.2	^c	^c	-1.6	-1.0	-259.0
		(60.0)	(39.8)	(93.9)	(0.6)	(1.7)	(0.6)	(0.4)	(0.4)	(0.8)	(0.3)	(0.3)	(0.1)			(0.9)	(0.2)	
FArPF ₄	226.0	-236.9	-331.1	-316.7	-0.2	-0.2	-3.5	-1.7	-1.7	-0.6	-0.4	-0.8	-0.8	-0.7	-0.6	-3.2	-1.2	-343.2
		(41.6)	(58.2)	(95.7)	(0.1)	(0.1)	(1.1)	(0.5)	(0.5)	(0.2)	(0.1)	(0.2)	(0.2)	(0.2)	(0.2)	(1.0)	(0.2)	
FKrPF ₄	218.3	-250.9	-269.3	-254.6	-0.9	-0.9	-3.0	-1.0	-1.0	-0.6	-0.9	-0.9	-0.7	-0.6	-0.6	-3.6	-1.1	-302.9
		(48.1)	(51.7)	(94.5)	(0.3)	(0.3)	(1.1)	(0.4)	(0.4)	(0.2)	(0.3)	(0.3)	(0.3)	(0.2)	(0.2)	(1.3)	(0.2)	
FXePF ₄	207.8	-255.7	-211.5	-197.7	-1.2	-1.2	-2.6	-0.7	-0.7	-0.7	-1.0	-1.0	-0.6	-0.5	-0.5	-3.1	-1.2	-260.6
		(54.6)	(45.2)	(93.5)	(0.6)	(0.6)	(1.2)	(0.3)	(0.3)	(0.3)	(0.5)	(0.5)	(0.3)	(0.2)	(0.2)	(1.5)	(0.3)	
FRnPF ₄	188.6	-255.0	-178.5	-165.6	-1.1	-1.1	-2.3	-0.7	-0.7	-1.0	-1.0	-0.7	-0.6	-0.5	-0.5	-2.7	-1.4	-246.3
		(58.6)	(41.0)	(92.8)	(0.6)	(0.6)	(1.3)	(0.4)	(0.4)	(0.6)	(0.6)	(0.4)	(0.3)	(0.3)	(0.3)	(1.5)	(0.3)	

Table S6. EDA-NOCV Results of FNgPF₂ and FNgPF₄ (Ng = Ar, Kr, Xe, and Rn) Molecules Considering FNg⁺ as One Fragment and

PF₂⁻ or PF₄⁻ as Another Fragment at the B3LYP-D3/TZ2P Level of Theory. All Energy Terms are Expressed in kcal mol⁻¹.

^aThe values within the parentheses are in percentage and show the contribution towards the total attractive interaction $\Delta E^{elstat} + \Delta E_T^{orb} + \Delta E^{disp}$.

^bThe values within parentheses are the percentage contribution towards the total orbital interaction ΔE_T^{orb} .