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Bismuth nitrate pentahydrate (Bi(NO3);-5H,0, > 99.0%), potassium bromide (KBr, 99.0%),
glacial acetic acid (CH;COOH, > 99.5%), urea (CO(NH;),, 99%), bisphenol A (C;sH;60,,
> 99%), norfloxacin (C;¢H;sFN303, 98%), sodium sulfate (Na,SO,4, > 98%), potassium
chloride (KCl, 99.8%), potassium ferricyanide (K3FeCgNg, 99%), potassium ferrocyanide
trihydrate (K4FeC¢Ng-3H,0, > 99.5%), 5,5-Dimethyl-1-pyrroline N-oxide (DMPO, 97%),
mannitol (C¢H;406, 98%), sodium oxalate (Na,C,O4, 99%) carbon tetrachloride (CCly, >
99.5%) and other used reagents are all analytical reagents and used directly with no further
purification.

Preparation of BiOBr/g-C;N,4 heterojunctions

The g-C3N4 was prepared via heating urea at 500 °C and 550 °C for 2 h, respectively.
2D/2D BiOBr/g-CsN, heterojunctions were fabricated by an in-situ self-assembly process
(Figure 1). Typically, 0.03 g g-CsN, was dispersed into water by ultrasonic treatment and
then 0.195 g KBr was dissolved into g-CsN, suspension (denoted as solution A). 0.795 g
Bi(NO3);-5H,0 and 9 mL CH3COOH were added into 91 mL water to get solution B. Under
stirring, the solution B was added into the solution A, and aging for 7 h. The precipitate was
washed with water and absolute ethanol for several times and dried at 60 °C in a vacuum
oven. Thus, 2D/2D BiOBr/g-C;N, contained 0.03 g g-CsN, was obtained and marked as
BiOBr/g-C3N4-0.03. The BiOBr/g-C3N,4 with different amount g-C3N,4 (0.01, 0.1 and 0.3 g)
were synthesized by varying the amount of g-CsN, and denoted as BiOBr/g-C5Ny-0.01,
BiOBr/g-C3N4-0.1 and BiOBr/g-C5Ny4-0.3, respectively. The pure BiOB can be prepared by
the same method without the addition of g-C;N,.

Characterization

The crystal phase was determined by a powder X-ray diffraction (XRD, Bruker D8) with
Cu Ka radiation. The micro-structure was measured on a field emission scanning electron
microscope (FESEM, Regulus 8200) and a transmission electron microscope (TEM, JEM
2100). The element analysis was detected on an energy dispersive X-ray spectroscopy (EDX).
The surface chemical states and charge transfer were determined on an in-situ X-ray
photoelectron spectrometer (in-situ XPS, Thermo Fisher Scientific Escalab 250Xi). The
optical properties were measured on an UV-vis diffuse reflectance spectroscopy (DRS,

Shimadzu UV-3600) and a time-resolved photoluminescence (PL) spectrometry (TRPL,
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Shimadzu RF530). The work function was detected on Ultraviolet photoelectron
spectroscopy (UPS, Thermo ESCALAB 250X1).

Photocatalytic activity test

The photocatalytic activity of the as-prepared sample was evaluated by photocatalytic
degradation of BPA and NFA under visible light irradiation. A high uniformity integrated
xenon light source (PLS-FX300HU, Beijing Perfectlight) equipped with a cutoff filter of 400
nm was used as the visible light source. Specifically, the 50 mg sample was dispersed into 50
mL BPA (20 ppm) or NFA (5 ppm) aqueous solution and stirred for 30 min in the dark to
achieve the equilibrium of adsorption and desorption. Then, 4 mL of mixed suspension was
taken out at certain intervals, centrifuged and filtered with polyether sulfone membrane. The
supernatants were analyzed by UV-vis spectrophotometer (Shimadzu UV 3600 UV-vis-NIR)
and liquid chromatography-mass spectrometry (LC-MS, Agilent 1290UPLC and Agilent
QTOF 6550) with waters BEH C18 column (2.1 x 50 mm, 1.7 pm).

Structure and computational details

Density functional theory calculations for the monolayer CN and (001) facet of tetragonal
BOB were carried out through the Materials Studio with the CASTEP mode. The Perdew-
Burke-Ernzerhof (PBE) form exchange-correlation functional was used within the
generalized gradient approximation (GGA). The convergence thresholds for the geometry
optimization were set as 5.0 x 10-° ¢V atom™! for energy and 0.02 eV A-! for maximum force.
After geometry optimization, the average potential profile was calculated to acquire the work
functions of the monolayer CN and (001) facet of tetragonal BOB.

PEC measurements

The photoelectrochemical (PEC) tests were measured on an electrochemical workstation
(CHI-660E). A Pt wire and Ag/AgCl (3 M KCI) were used as the counter electrode and
reference electrode, respectively. The 3 mg catalyst was ultrasonically dispersed in 400 pL
water. Then it was deposited on the fluoride tin oxide (FTO) substrate to serve as the working
electrode. A quartz cell filled with 0.2 M Na,SO,4 aqueous solution (pH = 7) was used as the
reaction system for detecting transient photocurrent responses and Mott-Schottky plots. 0.01
M KCI electrolyte containing 0.01 M K;[Fe(CN)s]/K4[Fe(CN)g] was applied to the test of

electrochemical impedance spectroscopy (EIS) Nyquist plots. A 300 W Xe lamp (CEL-
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HXF300, Beijing Au-light Co. Ltd., China) equipped with a 400 nm cutoff filter was used as

a visible light source.

EPR test

The electron paramagnetic resonance (EPR) spectra were measured on an EPR
spectrometer (A300, Bruker, Germany). 5, 5-dimethyl-l-pyrroline N-oxide (DMPO) was used
as a spin-trap reagent under visible light to detect reaction intermediates (DMPO--O,  and
DMPO--OH). ‘O, and -OH were tested in methanol and aqueous solution (at room
temperature and in air atmosphere), respectively. Instrument settings were as follows.
Modulation frequency: 100.00 kHz; modulation amplitude: 1.00 G; time constant: 40.96 ms;

conversion time: 40.00 ms; sweep time: 40.96 s. The microwave bridge power and frequency

were 5.72 mW and 9.826 GHz, respectively.
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Figure S1. The adsorption rate of BPA on different photocatalysts in the dark.
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Figure S2. The photocatalytic activities of g-CsN,, BiOBr and BiOBr/g-CsNs composites
contained with different amount of g-C;N4 for photocatalytic degradation of BPA under

visible light.
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Figure S3. XRD patterns of BiOBr/g-C;N, before and after photocatalytic degradation of
BPA and NFA under visible light.
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Figure SS. TEM image of BiOBr/g-C;Ny after photocatalytic degradation of NFA.
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Figure S6. UPS spectrum of g-C;Nj.
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Figure S7. UPS spectrum of BiOBr.
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Figure S8. MS spectrum of BPA.
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Figure S9. P1 and P4 MS spectrum of BPA degradation on BiOBr/g-C;N, under visible light.
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Figure S10. P2 and P3 MS spectrum of BPA degradation on BiOBr/g-C;N,4 under visible

light.
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Figure S11. P5 MS spectrum of BPA degradation on BiOBr/g-C;N, under visible light.
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Figure S12. P6 MS spectrum of BPA degradation on BiOBr/g-C;N, under visible light.
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Figure S13. MS spectrum of NFA degradation on BiOB1/g-C;N,4 under visible light.
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Figure S14. N1 and N2 MS spectrum of NFA degradation on BiOBr/g-C;N, under visible
light.
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Figure S15. N3 MS spectrum of NFA degradation on BiOBr/g-C3N, under visible light.

S9



= 301.1378

x10% [+ESI (rt:1.083min) Frag=173. 0V20211112A-0020.d
6_
3. 5+
5_
&
4.5 ]
4 2
L)
3. 54
3_
2.5
24
] 8] g
1 ! =
= It}
0. 5 8 | &
o ul.l 1 h m s il uliy wlh
294 295 296 297 295 299 300

301

A

302.1301

| OH
HN N

HN A A

294

309. 957

L 303. 1338

—

O T Ll TR 11]

ne ld e

302 303 304 305 306 307 305 309 310 311 312 313

Figure S16. N4 MS spectrum of NFA degradation on BiOBr/g-C;N4 under visible light.
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Figure S17. N5 MS spectrum of NFA degradation on BiOBr/g-C;N,4 under visible light.
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Figure S18. N6 and N7 MS spectrum of NFA degradation on BiOBr/g-C;N, under visible

light.
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Figure S19. N8 MS spectrum of NFA degradation on BiOBr/g-C;N,4 under visible light.
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Figure S20. N9 MS spectrum of NFA degradation on BiOBr/g-C;N,4 under visible light.
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Scheme S1. The possible degradation pathways and intermediates during BPA degradation
over BiOBr/g-C;N, under visible light illumination (The numbers 229, 201, 111, 139, 153,
137 and 135 are the value of [M+H]" m/z.).

S12



N8 2
-COOH 76
Plan B

o o O O . O O
S e AR o
| +0 N N +0 N N
N N L NS
HN N 2H
NFA 320 s N1 336 N2 30
-CO
0 o i i
N \ HN N N N
P J 0 HNJ N H.N N
o
N5 279 N4 294 N3 322
-CO
6 o 0 o
F
N
H,N N
2 ) )
N6 251 N7 236

Scheme S2. The possible degradation pathways and intermediates during NFA degradation
over BiOBr/g-C;N, under visible light illumination (The numbers 320, 336 and 350, etc., are
the value of [M+H]" m/z.).
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