Supporting Information for

## Mercurial Possibilities: Determining Site Distributions in Cu<sub>2</sub>HgSnS<sub>4</sub> Using <sup>63/65</sup>Cu, <sup>119</sup>Sn, and <sup>199</sup>Hg Solid-state NMR Spectroscopy

Amit Bhattacharya, Vidyanshu Mishra, Dylan G. Tkachuk, Arthur Mar<sup>\*</sup> and Vladimir K. Michaelis<sup>a</sup> Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

|    | Cu2 <b>Zn</b> SnS4 | Cu2 <b>Cd</b> SnS4 | Cu₂ <i>Hg</i> SnS₄ | expected |
|----|--------------------|--------------------|--------------------|----------|
| Cu | 24                 | 24                 | 25                 | 25       |
| М  | 12                 | 13                 | 11                 | 12       |
| Sn | 13                 | 12                 | 11                 | 13       |
| S  | 51                 | 51                 | 53                 | 50       |

**Table S1.** EDX analyses (mol %) for  $Cu_2MSnS_4$  (M = Zn, Cd, Hg).

|                                    | a (Å)     | <i>c</i> (Å) | <i>c</i> /2 <i>a</i> ratio | V (Å <sup>3</sup> ) | Reference        |
|------------------------------------|-----------|--------------|----------------------------|---------------------|------------------|
| Cu <sub>2</sub> ZnSnS <sub>4</sub> | 5.436     | 10.85        | 0.998                      | 320.6               | Hahn1965         |
|                                    | 5.4356(1) | 10.8352(2)   | 0.997                      | 320.13(1)           | This work        |
| Cu₂CdSnS₄                          | 5.582     | 10.86        | 0.973                      | 338.4               | Hahn1965         |
|                                    | 5.5920(1) | 10.8399(2)   | 0.969                      | 338.97(1)           | Rosmus2014       |
|                                    | 5.583     | 10.824       | 0.969                      | 337.4               | Olekseyuk2019    |
|                                    | 5.5829(5) | 10.8245(10)  | 0.969                      | 337.39(5)           | Bhattacharya2021 |
|                                    | 5.5930(1) | 10.8441(2)   | 0.969                      | 339.22(1)           | This work        |
| Cu₂HgSnS₄                          | 5.566     | 10.88        | 0.977                      | 337.1               | Hahn1965         |
|                                    | 5.542(3)  | 10.908(7)    | 0.984                      | 335.0(2)            | Kaplunnik1977    |
|                                    | 5.555     | 10.911       | 0.982                      | 336.7               | Gruzdev1988      |
|                                    | 5.577(1)  | 10.898(2)    | 0.977                      | 339.0(1)            | Himmrich1991     |
|                                    | 5.5749(6) | 10.882(1)    | 0.976                      | 338.21(4)           | Kabalov1998      |
|                                    | 5.580(2)  | 10.895(3)    | 0.976                      | 339.2(2)            | Vu2019           |
|                                    | 5.5819(1) | 10.8925(2)   | 0.976                      | 339.38(1)           | This work        |

Table S2. Tetragonal cell parameters for Cu<sub>2</sub>MSnS<sub>4</sub> (M = Zn, Cd, Hg). <sup>a</sup>

<sup>a</sup> Standard uncertainties, where reported, are shown in parentheses. The list for Cu<sub>2</sub>ZnSnS<sub>4</sub> is not comprehensive, because there are hundreds of previous reports of this compound.

## REFERENCES

A. Bhattacharya, D.G. Tkachuk, A. Mar, V.K. Michaelis, Mere anarchy is loosed: Structural disorder in Cu<sub>2</sub>Zn<sub>1-x</sub>Cd<sub>x</sub>SnS<sub>4</sub>, *Chem. Mater.* 2021, **33**, 4709–4722.

V.S. Gruzdev, V.Yu. Volgin, E.M. Spiridonov, L.N. Kaplunnik, E.A. Pobedimskaya, T.N. Chvileva, N.M. Chernitsova, Velikite, Cu<sub>2</sub>HgSnS<sub>4</sub> – a mercury member of the stannite group, *Dokl. Akad. Nauk SSSR*, 1988, **300**, 432–435.

H. Hahn, H. Schulze, Über quaternäre Chalkogenide des Germaniums und Zinns, Naturwissenschaften 1965, 52, 426.

M. Himmrich, H. Haeuseler, Far infrared studies on stannite and wurtzstannite type compounds, *Spectrochim. Acta Part Mol. Spectrosc.*, 1991, **47**, 933–942.

Yu. K. Kabalov, T.L. Evstigneeva, E.M. Spiridonov, Crystal structure of Cu<sub>2</sub>HgSnS<sub>4</sub>, a synthetic analog of the mineral velikite, *Crystallogr. Rep.* 43 (1998) 16–20 (Transl. Kristallografiya 1991, **43**, 21–25).

L.N. Kaplunnik, E.A. Pobedimskaya, N.V. Belov, Crystal structure of velikite Cu<sub>3.75</sub>Hg<sub>1.75</sub>Sn<sub>2</sub>S<sub>8</sub>, *Sov. Phys. Crystallography*, 1977, **22**, 99–100 (*Transl. Kristallografiya*,1977, **22**, 175–177).

I.D. Olekseyuk, L.P. Marushko, I.A. Ivashchenko, L.V. Piskach, O.V. Parasyuk, Phase Equilibria between the Quaternary Semiconductors  $A_{2}B^{||}C^{||}X_{4}$  ( $A^{|}$  – Cu;  $B^{||}$  – Zn, Cd;  $C^{||}V$  – Si, Ge, Sn, X – S, Se), *Chem. Met. Alloys*, 2019, **12**, 51–60.

K.A. Rosmus, J.A. Brant, S.D. Wisneski, D.J. Clark, Y.S. Kim, J.I. Jang, C.D. Brunetta, J.-H. Zhang, M.N. Smec, J.A. Aitken, Optical nonlinearity in Cu<sub>2</sub>CdSnS<sub>4</sub> and  $\alpha/\beta$ -Cu<sub>2</sub>ZnSiS<sub>4</sub>: Diamond-like semiconductors with high laser-damage thresholds, *Inorg. Chem.*, 2014, 53, 7809–7811.

T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, H.D. Tong, V.A. Tkach, O.V. Parasyuk, O.Y. Khyzhun, A theoretical and experimental study of the valence-band electronic structure and optical constants of quaternary copper mercury tin sulfide, Cu<sub>2</sub>HgSnS<sub>4</sub>, a potential material for optoelectronics and solar Cells, *Opt. Mater.*, 2019, **96**, 109296.



Figure S1. The Le Bail fittings of powder XRD patterns for Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>CdSnS<sub>4</sub>, and Cu<sub>2</sub>HgSnS<sub>4</sub>.



**Figure S2.** Experimental <sup>119</sup>Sn MAS NMR spectra for Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>CdSnS<sub>4</sub>, and Cu<sub>2</sub>HgSnS<sub>4</sub>. The asterisks (\*) mark spinning sidebands due to a small CSA.



**Figure S3**. Experimental (black, ppm scale) and spectral simulations (blue) for non-spinning  ${}^{65}Cu$  NMR spectra at 7.05, 11.75 and 21.1 T for Cu<sub>2</sub>ZnSnS<sub>4</sub>, Cu<sub>2</sub>HgSnS<sub>4</sub>, and Cu<sub>2</sub>CdSnS<sub>4</sub>. The NMR spectral simulations were performed using the Dmfit software.



Figure S4. Deconvolution of the non-spinning 65Cu NMR spectrum for Cu<sub>2</sub>ZnSnS<sub>4</sub>.



**Figure S5.** Optical diffuse reflectance spectra for  $Cu_2ZnSnS_4$ ,  $Cu_2CdSnS_4$ , and  $Cu_2HgSnS_4$ , with fittings made on the assumption of direct band gaps.



Figure S6. Electronic band structure, DOS, and -pCOHP curves for  $Cu_2ZnSnS_4$ ,  $Cu_2CdSnS_4$ , and  $Cu_2HgSnS_4$  compounds.