Supporting Information

A new ratiometric switch "two-way" detects hydrazine and hypochlorite via "dye-release" mechanism with PBMCs bioimaging study

Sangita Das, ^{a, b, c*} Lakshman Patra, ^a Partha Pratim Das, ^d Kakali Ghoshal, ^e Saswati Gharami, ^a James. W. Walton, ^b Maitree Bhattacharyya ^e and Tapan Kumar Mondal ^{a, *}

a. Department of Chemistry, Jadavpur University, Kolkata -700032, India.

^{b.} Durham University, Department of Chemistry. Durham, DH1 3LE, UK, Email: <u>sangita.das@durham.ac.uk; sangitadas2327@gmail.com, sangita.das@kist-europe.de</u>

^{c.} KIST Europe Forschungsgesellschaft mbH, Campus E71, 66123 Saarbrücken, Germany

^d Center for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea

e. Department of Biochemistry, University of Calcutta, Kolkata-700019, India

CONTENTS

1.	Experimental
2.	X-ray crystallography
3.	Selectivity study
4.	Determination of detection limit
5.	Linear responsive curves of the probes depending on N_2H_4 and OCl ⁻
	concentration
6.	Determination of Quantum yield
7.	pH study
8.	Time dependent fluorescence spectra of HQCN with added N_2H_4
9.	Time dependent fluorescence spectra of HQCN with added OCI
10.	Computational study
<i>11</i> .	Bioimaging and MTT assay

12. ¹ H NMR spectrum of HQCN
13. ¹³ C NMR spectrum of HQCN
14. Mass spectrum (HRMS) of HQCN
15. MS spectrum of the product (HQCN with N_2H_4)
16. MS spectrum of the product (HQCN with OCl)
17. Comparison Table
18. References

1. Experimental General

Unless otherwise mentioned, materials were obtained from commercial suppliers and were used without further purification. Thin layer chromatography (TLC) was carried out using Merck 60 F_{254} plates with a thickness of 0.25 mm. ¹H and ¹³C NMR spectra were recorded on Brucker 300 MHz instruments. For NMR spectra, CDCl₃ was used as solvent using TMS as an internal standard. Chemical shifts are expressed in δ units and ¹H–¹H and ¹H–C coupling constants in Hz. UV-vis spectra were recorded on a PerkinElmer lambda 750 spectrometer. Fluorescence spectra were recorded on Shimadzu RF-6000 fluorescence spectrometer. For the titration experiment we used the anions, amines and different neutral analytes viz. [different guest analytes such as hydroxylamine, ammonia, ethylenediamine, hydrazine, methylamine, n-butylamine, ethylenediamine, ammonia, thiourea, triethylamine H₂O₂, S^{2–}, N₃⁻, NO₂⁻, NO₃⁻, I⁻, Cl⁻, F⁻, SO₄^{2–}, OONO⁻, O^{2–}, t-BuOOH] anions as their sodium salts.

General method of UV-Vis absorption and fluorescence emission titrations:

For both UV-Vis and fluorescence titrations, a stock solution of **HQCN** was prepared (10 μ M) in CH₃OH-H₂O (1/4, v/v) in the presence of HEPES buffer (10 mM) solution at pH = 7.2. The solution of the guest anions using their sodium salts at 10 μ M were prepared in buffered deionised water at pH 7.2. The absorption spectra of these solutions were recorded by means of UV-Vis methods using a 10 mm path length quartz cuvette. Fluorescence emission was measured in a 10 mm path length quartz cuvette with the excitation wavelength 370 nm. Fluorescence lifetimes were measured using a time-resolved spectrofluorometer from IBH, UK. The instrument uses a picoseconds diode laser (NanoLed-07, 370 nm) as the excitation source and works on the principle of time-correlated single photon counting. The goodness of fit was evaluated by χ^2 criterion and visual inspection of the residuals of the fitted function to the data.

Materials and methods Details of bio-imaging

Venous blood (3ml) was obtained by venepuncture from a healthy male volunteer donor (age - 30 years) with informed consent. The research program was approved by Calcutta University Biosafety and Ethics Committee. Peripheral blood mononuclear cells were isolated with histopaque-1077 gradient [SIGMA] through density gradient centrifugation. PBMCs were washed in ice cold PBS for two times and resuspended in the same with a cell density of 3 X 10⁶. PBMCs were treated with or without N₂H₄ (25 μ M) and **HQCN** (10 μ M) and incubated for 30 minutes at 37 ^oC in dark. **HQCN** samples were prepared in DMSO and PBS (1:1). The fluorescence intensity was measured in fluorescence microscope (Carl Zeiss HBO 100) under 40X magnification with fluorescence emissions

at 620 nm (Red channel, Filter set 42) nm and 450 nm (Blue channel, Filter Set 9) respectively. The relative fluorescence intensities were quantitated using ImageJ software.

6 ml of venous blood was obtained from from a healthy male volunteer donor (age - 30 years) with informed consent maintaining ethical guidelines of Calcutta University. Peripheral blood mononuclear cells or PBMCs (lymphocytes and monocytes) were isolated within one hour of sampling by density gradient centrifugation using histopaque-1077 (Sigma) by centrifuging at 400×g for 30–40 min at room temperature. The middle layer or 'buffy coats' contains the PBMCs which were collected, washed and allowed to grow in supplemented DMEM in cell culture plate for 3 hour in a humidified 37° C, 5% CO₂ incubator. Adherent monocytes were scraped gently from the plate bottom and suspended in HBSS (pH 7.4). Observed cell viability was ~90% as checked by Trypan Blue exclusion and cell count noted to be 1 × 10⁶ in 500 µl of cell suspension. HQCN samples were prepared in 50% DMSO and 50% PBS. Monocytes were then incubated with 10 µM HQCN sample for 50 minutes at 37° C. Cells were observed under fluorescence microscope (Carl Zeiss HBO 100) with fluorescence emissions at 620 and 500 nm respectively.

MTT assay

To determine cell viability against HQCN, PBMCs were treated with different concentrations of HQCN solution (upto 50 μ M) for 1 hour at 37°C against control cell suspension with no added HQCN. Cell density remains 10⁶ cells per well in a 96- well plate. 100 μ l of MTT solution (5mg/ml) was added to each well including control and incubated for 4 hours at 37°C. The purple coloured formazan crystals were dissolved in 100 μ l DMSO and the absorbance were measured at 570 nm. Cell viability was calculated using the following calculation:

% of Cell Viability =
$$\frac{\text{(Absorbance of treatment group - blank)}}{\text{(Absorbance of control group - blank)}} X 100$$

2. X-ray crystallography

Single crystals were obtained by slow evaporation of methanolic solution of HQCN. Xray data were collected using an automated Bruker AXS Kappa smart Apex-II diffractometer equipped with an Apex-II CCD area detector using a fine focus sealed tube as the radiation source of graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Details of crystal analyses, data collection and structure refinement are summarized in Table S1. Reflection data were recorded using the ω scan technique. The structure was solved and refined by full-matrix least-squares techniques on F^2 using the SHELXL-2016/6. [1] The absorption corrections were done by multi-scan (SHELXTL program package) and all the data were corrected for Lorentz, polarization effect. Hydrogen atoms were included in the refinement process as per the riding model. The crystallographic data have been deposited to the Cambridge Crystallographic Data Center: Deposition numbers CCDC 1858041.

Single crystals of the sensor (HQCN) suitable for X-ray studies were obtained by dissolving powder of the pure compound in CHCl₃: CH₃CN (1: 9, v/v) and slow evaporation of the solution. A summary of the crystallographic data is given in Table S1.

Figure S1: ORTEP of **HQCN** with 35% ellipsoidal probability (selected bond distances (Å): O1-C18, 1.354(2); S1-6, 1.7282(17); S1-C7, 1.7453(18); N1-C1, 1.381(2); N1-C7, 1.300(2); N2-C9, 1.143(2); N3-C11, 1.327(2); N3-C19, 1.357(2); C8-C10, 1.345(2) and C8-C9, 1.435(2)

Table S1: Crystallographic data and refinement parameters of H₂L.

Formula	$C_{20}H_{13}N_{3}O S$
Formula Weight	343.39
Crystal System	Monoclinic
Space group	P21/n
a, b, c [Å]	15.8363(12), 5.1256(4), 20.6360(16)
β [°]	103.118(3)
V [Å ³]	1631.3(2)
Z	4
$D(calc) [g/cm^3]$	1.398
μ (Mo Kα) [mm ⁻¹]	0.211
F(000)	712
Absorption Correction	multi-scan
Temperature (K)	293(2)
Radiation [Å]	0.71073
θ(Min-Max) [°]	1.838-27.158
Dataset (h; k; l)	-20 and 20; -6 and 6; -26 and 26

Total, Unique Data, R(int)	52254/3605/0.0671
Observed data $[I > 2\sigma(I)]$	2727
Nref, Npar	3605/226
R, wR_2	0.0391, 0.0977
$\Delta q(max)$ and $\Delta q(min) [e/Å^3]$	0.165 and -0.199
Goodness of fit(S)	1.038

3. Selectivity study

Figure S2: A comparative study of emission intensity of HQCN at 455 nm after addition of different analytes (3 equivalents) in the solution of HQCN (10 μ M) in presence of N₂H₄ (2 equivalents), (The different analytes are, HA=hydroxylamine, A = ammonia, EN = ethylamine, MA = methylamine, BA = n-butylamine, EDA = ethylene diamine, THU = Thiourea, TA = Triethylamine. $\lambda_{ex} = 370$ nm.)

Figure S3: A comparative study of emission intensity of HQCN at 500 nm after addition of different analytes (3 equivalents) in the solution of HQCN (10 μ M) in presence of OCI⁻ (2 equivalents) $\lambda_{ex} = 370$ nm.

4. Determination of detection limit: (For N₂H₄)

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **HQCN** without N_2H_4 was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit (DL) of **HQCN** for N_2H_4 was determined from the following equation: $DL = K \times Sb_1/S$, where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve. For N_2H_4 :

Figure S4: Emission intensity ratio I₄₅₅/I₆₂₀ of HQCN depending on the concentration of N₂H₄

From the graph we get slope = 478794.048, and Sb₁ value is 0.00360 Thus using the formula we get the Detection Limit = 2.25×10^{-8} M i.e. HQCN can detect N₂H₄ in this minimum concentration through fluorescence method.

Determination of detection limit: (For OCI-)

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of **HQCN** without OCl⁻ was measured by 10 times and the standard deviation of blank measurements was determined.

Figure S5: Emission intensity ratio (I₅₀₀/I₆₂₀) of HQCN depending on the concentration of OCI-

The detection limit (DL) of **HQCN** for N_2H_4 was determined from the following equation: DL = K × Sb₁/S, where K = 2 or 3 (we take 3 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve. For N_2H_4 :

From the graph we get slope =114623.3934, and Sb₁ value is 0.0013231

Thus using the formula, we get the Detection Limit = 3.46×10^{-8} M i.e. HQCN can detect N₂H₄ in this minimum concentration through fluorescence method.

5. Linear responsive curve of HQCN depending on N₂H₄ concentration:

Figure S6: The linear responsive curve with absorbance at 272 nm of HQCN depending on the N_2H_4 concentration.

Linear responsive curve of HQCN depending on OCI⁻ concentration:

Figure S7: The response curve of HQCN absorbance at 512 nm depending on the OCI⁻ concentration.

6. Determination of fluorescence Quantum Yields (Φ) of HQCN and its complex with N₂H₄ and OCI: For measurement of the quantum yields of HQCN and its complex with N₂H₄, we recorded the absorbance of the compounds in methanol solution. The emission spectra were recorded using the maximal excitation wavelengths, and the integrated areas of the fluorescence-corrected spectra were measured. The quantum yields were then calculated by comparison comparison with fluorescein (Φ s = 0.97 in basic ethanol) as reference using the following equation:

$$\Phi_{\rm X} = \Phi_{\rm S} \times \left(\frac{Ix}{Is}\right) \times \left(\frac{As}{Ax}\right) \times \left(\frac{nx}{ns}\right)^2$$

Where, x & s indicate the unknown and standard solution respectively, Φ is the quantum yield, *I* is the integrated area under the fluorescence spectra, *A* is the absorbance and *n* is the refractive index of the solvent.

We calculated the quantum yield of HQCN, HQCN- N_2H_4 and HQCN-OCl⁻ using the above equation and the value is 0.39, 0.24 and 0.45 respectively.

7. pH dependent study:

Figure S8: Fluorescence response of only HQCN and HQCN + N_2H_4 at (a) 455 nm and (b) 620 nm as a function of pH in MeOH/ H₂O (1/ 1, v/v), pH is adjusted by using aqueous solutions of 1 M HCl or 1 M NaOH. [HQCN] = 10 μ M, [N₂H₄] = 60 μ M. λ_{ex} = 370 nm.

Figure S9: Fluorescence response of only HQCN and HQCN + **OCI**⁻ at (a) 500 nm and (b) 620 nm as a function of pH in MeOH/ H₂O (1/ 1, ν/ν), pH is adjusted by using aqueous solutions of 1 M HCl or 1 M NaOH. [HQCN] = 10 μ M, [OCI⁻] = 60 μ M. λ_{ex} = 370 nm.

8. Time dependent fluorescence spectra of HQCN with added N₂H₄

Figure S10: (a) Change of emission spectra of HQCN (10 μ M) upon addition of hydrazine (2 equivalents), (b) Time dependent fluorescence spectra of HQCN at 455 nm after interaction hydrazine with time. (c) Linear relationship of emission of HQCN at 455 nm after interaction hydrazine with time.

Figure S11: (a) Change of emission spectra of HQCN (10 μ M) upon addition of OCl⁻ (2 equivalents), (b) Time dependent fluorescence spectra of HQCN at 500 nm after interaction OCl⁻ with time. (c) Linear relationship of emission of HQCN at 500 nm after interaction OCl⁻ with time.

Entry	Φ	τ (ns)	$k_{\rm r} (10^8 \times {\rm s}^{-1})$	$k_{\rm nr} (10^8 \times {\rm s}^{-1})$
HQCN	0.39	0.7	5.56	8.7
HQCN-N ₂ H ₄	0.24	6.32	0.37	1.13
HQCN-OC1-	0.45	5.75	0.78	0.92

10. Computational study:

Full geometry optimizations were carried out using the density functional theory (DFT) method at the B3LYP/6-31+G(d) [2-4] level for the compounds. The vibrational frequency calculations were performed to ensure that the optimized geometries represent the local minima and there were only positive eigen values. Vertical electronic excitations based on B3LYP optimized geometries were computed using the time-dependent density functional theory (TDDFT) formalism [5-7] in methanol using conductor-like polarizable continuum model (CPCM) [8-10]. All calculations were performed with Gaussian09 program package [11] with the aid of the GaussView visualization program.

Figure S12: Optimized structures, HOMO and LUMO orbitals of HQCN calculated at the DFT level using the B3LYP/6-311G+(d,p) basis set.

		X Contraction
НОМО	HOMO-1	НОМО-2
E = -5.84 eV	E = -6.28 eV	E = -6.48 eV
LUMO	LUMO+1	LUMO+2
E= -2.61 eV	E= -1.26 eV	E = -0.66 eV

Figure S13: Contour plot of selected molecular orbitals of HQCN

	× · · · · · · · · · · · · · · · · · · ·	× · · · · · · · · · · · · · · · · · · ·
НОМО	HOMO-1	HOMO-2
E = -5.42 ev	E = -5.97 ev	E = -6.68 ev
LUMO	LUMO+1	LUMO+2
E = -1.28 ev	E = -0.62 ev	E = 0.76 ev

Figure S14: Contour plot of selected molecular orbitals of $HQCN-N_2H_4$ complex.

НОМО	HOMO-1	НОМО-2
E = -5.99 ev	E = -6.94 ev	E = -7.13 ev
LUMO	LUMO+1	LUMO+2
E = -2.18 ev	E = -1.22 ev	E = 0.20 ev

Compound	Excitation	Excitation	Oscillator	Energy (eV)
		wavelength	strength (au)	
		(nm)		
HQCN	HOMO→LUMO (95%)	461.47	0.4150	2.6867
	HOMO-1→LUMO (94%)	392.12	0.6966	3.1619
	HOMO-2→LUMO (98%)	373.11	0.0873	3.3230
	HOMO→LUMO +1(67%)	302.74	0.2740	4.0954
HQCN-	HOMO \rightarrow LUMO (84%)	336.11	0.2183	3.6888
N_2H_4	HOMO \rightarrow LUMO+1(46%)	277.93	0.9427	4.4610
	$HOMO-1 \rightarrow LUMO+1(85\%)$	256.76	0.0281	4.8287
HQCN-	HOMO→LUMO (92 %)	379.03	0.0567	3.2711
OCI-	HOMO-2→LUMO (72%)	253.42	0.5423	4.8925

Table S3: Vertical electronic excitations of HQCN, HQCN- N_2H_4 and HQCN-OCl⁻ (HQA)calculated by TDDFT/B3LYP/CPCM method.

11. Bioimaging and MTT assay

Figure S16: The mean fluorescence intensities were measured in ImageJ, which shows a significant (P < 0.05) shifts from red channel to blue channel fluorescence when hydrazine was added. When there was no hydrazine present red fluorescence was significantly (P < 0.05) more visible than blue. The P values were calculated using one-way ANOVA followed by multiple comparison for differences between groups.

Figure S17: Percentage of viable cells over HQCN concentration range (5-50 μ M) presence and absence of N₂H₄.

Figure S18: The mean fluorescence intensities were measured in Image, which shows a significant (P < 0.05) shifts from red (577 ± 39.8) to green (2795 ± 156.8) fluorescence when OCl- was added. When there was no OCl- present red fluorescence (2362.3 ± 224.1) was significantly (P < 0.05) more visible than green (552.6 ± 45.2). The P values were calculated using one-way ANOVA followed by multiple comparison for differences between groups.

Figure S19: Percentage of viable cells over HQCN concentration range (5-50 μ M) presence and absence of OCI⁻.

12. ¹H NMR spectrum of HQCN

Figure S20: ¹H NMR (400 MHz) spectrum of HQCN in d₆-DMSO

13. ¹³C NMR spectrum of HQCN

Figure S21: ¹³C NMR (100 MHz) spectrum of HQCN in d₆-DMSO

14. Mass spectrum (HRMS) of HQCN

Figure S22: HRMS of HQCN.

15. MS spectrum of the product (HQCN with N₂H₄)

Figure S23: HRMS of HQCN+N₂H₄ Complex.

Figure S24: HRMS of HQCN+OCl⁻ complex.

Figure S25: ¹H NMR (400 MHz) spectra of (a) HQCN (Conc. = 7.2×10^{-3} M), (b) [HQCN+ N₂H₄] (3.6 × 10⁻³ M)], (c) [HQCN + OCl⁻] (Conc. = 7.2×10^{-3} M) in d⁶ DMSO containing 1% D₂O.

17. Comparison Table

Table S4

Sr.	Fluorophore Used	Ratiometric	Detection Limit	Bioimaging Studies	Bioimaging	References	Sensing Guest
No		Fluorescence		(N ₂ H ₄ and OCl ⁻	Studies		Analytes
		Change		detection)	With		
		(Detection			Human		
		method)			PBMCs		
1.	Xanthen-2H-indene-1,3-	No	75 nM	Only N ₂ H ₄	No	New J.	N ₂ H ₄
	dione					Chem., 2021,	
						45, 15869–	
						15875.	
2.	Carbazole-naphthalimide	No	65 nM	Only N ₂ H ₄	No	New J.	N_2H_4
						Chem., 2021,	
						45, 17095–	
						17100.	
3.	Carbazol-indene-dione	No	4.94 x 10 ⁻⁷ mol L ⁻¹	Only N ₂ H ₄	No	New J.	N ₂ H ₄
						Chem., 2021,	
						45, 21151–	
						21159	
4.	Styryl bridge containing a	No	$8.05 \times 10^{-7} \text{ M for}$	Yes	No	Org. Biomol.	hypochlorite and
	triphenylamine-		Hypochlorite			Chem., 2022,	nerve agent
	thioimidazole					20, 4803–	mimic DCP
						4814	
5.	Pyrene	Yes	0.04 ppm	Yes	No	Chem. Sci.,	hypochlorite
						2022, 13,	
						2286–2295	
6.	Benzaldehyde-indole	No	1.18 nM for	Yes	No	Analyst,	cyanide
			Hypochlorite			2021, 146,	and hypochlorite
						5658–5667	
7.	Phthalimide	No	6.4 ppb	Only N ₂ H ₄	No	RSC Adv.,	N ₂ H ₄
						2021, 11,	
						21269–21278	
8.	diacetoxy-functionalized	No	78.8 nM	Only N ₂ H ₄	No	Dalton	N_2H_4
	UiO-66 metal–organic					Trans., 2020,	
	framework					49, 12565–	
						12573	
9.	HydroxyBenzothiazolyl	No	7.8 nM	Yes	No	New J.	hypochlorite
	dihydroPyrazole					Chem., 2018,	
						42, 15990-	

						15996	
10.	Melamine-modified gold	No	0.1 µM for sulfite	No	No	Analyst,	Sulfite and
	nanoparticle					2012, 137,	hypochlorite
						3437–3440	
11.	Coumarin	Yes	2 X 10 ⁻⁵ M ⁻¹	No	No	Anal.	N ₂ H ₄
						Methods,	
						2013, 5, 2653	
12.	4-hydroxynaphthalimide-	Yes	2.1 × 10 ⁻⁸ M	Only N ₂ H ₄	No	Sensors and	N ₂ H ₄
	derived ratiometric					Actuators B:	
	fluorescent					Chemical,	
						2015, 208,	
						512-517	
13.	1,8-naphthalimide	Yes	$9.40 \pm 0.12 \text{ nM}$	Only N ₂ H ₄	No	Sens.	N ₂ H ₄
	derivative					Actuators, B,	
						2016, 227,	
						411-418	
14.	Isoniazid	No	No	No	No	Journal of	formation of
						Pharmaceutic	equimolar
						al and	quantities of
						Biomedical	hydrazine or
						Analysis,	ammonia during
						2007. 43.	degradation of
						1213-1220	the drug to
							isonicotinic acid
							and
							isonicotinamide
							respectively.
15.	Acetone azine or acetone	No	limit of quantitation	No	No	Journal of	hydrazine in
	azine-d12	(in situ	(LOO) as low as			Pharmaceutic	drug substances
		derivatization-	0.1 ppm when the			al and	using in situ
		headspace	API (active			Biomedical	derivatization-
		GC-MS)	pharmaceutical			Analysis	headspace GC-
			ingredient) samples			2009. 49.	MS
			are prepared at 10			529-533	
			mg per headspace			029 000	
			injection vial				
16	Derivatization of	No (method	LOD and LOO in	No	No	Analytica	Determination of
10.	hydrazine with ortho-	by GC-MS)	this study were		110	Chimica	hydrazine in
	nhthalaldehvde (OPA) in		calculated as 0.002			Acta 2013	water by gas
	water		and 0.007 g I^{-1}			769 79-83	chromatography
	watel					107, 19-05	mass
							-illass
17		N	9.5 × 10-11 M	N-	N-	An al Cl	Spectrometry
1/.	Orino-phinaidialdehyde	INO	8.5 × 10 ¹¹ M	INO	NO	Anal. Chem.,	Surface-
	Derivative					2015, 8 7,	Enhanced

						6460–6464	Raman
							Spectroscopy-
							Based Approach
							Detection of
							Hydrazine
18.	Fluorescein amide system	No	40 mM	Yes	No	Chem.	OC1-
						Commun.,	
						2011, 47,	
						11978–11980	
19.	Acedan	No	16.6 nM	Yes	No	J. Am. Chem.	OC1-
						Soc. 2015,	
						137, 18,	
						5930–5938	
20.	benzo[d]thiazol-2-yl)-3-(8-	Yes	hydrazine and OCl-	Yes	Yes	Present Work	Hypochlorite
	methoxyquinolin-2-		2.25×10^{-8} M and				and Hydrazine
	yl)acrylonitrile		$3.46 \times 10^{-8} \text{ M}$				
			respectively				
						1	

18. References:

[1] G. M. Sheldrick, *Acta Cryst.* 2008, A64, 112-122; (b) G. M. Sheldrick, *Acta Cryst.* 2015, C71, 3-8.

- [2] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
- [3] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785–789.
- [4] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta 77 (1990) 123–141.
- [5] P. J. Hay, W. R. Wadt, J. Chem. Phys. 82 (1985) 299.
- [6] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454-464.
- [7] R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109 (1998) 8218-8224.
- [8] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998) 4439–4449.
- [9] V. Barone, M. Cossi, J. Phys. Chem. A 102 (1998) 1995–2001.
- [10] M. Cossi, V. Barone, J. Chem. Phys. 115 (2001) 4708–4717.
- [11] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24 (2003) 669-681.
- [12] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
- M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H.

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.