Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022

Supplementary Materials:

Data-Driven Generation of Mixed X-Anion Perovskites

Properties

Jun-Jie Hu'?*3 Zhe-Yong Zhang’, Guo-Xiang Zhao!
Qiao-Hong Li'*, Peng Gao***, Rong-Jian Sa>!*
IState Key Laboratory of Structural Chemistry,

Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
2University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
3Fujian Key Laboratory of Functional Marine Sensing Materials,
College of Materials and Chemical Engineering,

Minjiang University, Fuzhou, Fujian, 350108, PR China.
4CAS Key Laboratory of Design and Assembly of Functional Nanostructures,
Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
> Center for Integrated Quantum Information Technologies (IQIT),
School of Physics and Astronomy and State Key Laboratory of Advanced
Optical Communication Systems and Networks,
Shanghai Jiao Tong University, Shanghai 200240, China
*E-mail: 1qh2382@fjirsm.ac.c; E-mail: peng.gao@fjirsm.ac.cn;
E-mail: rjsa@mju.edu.cn

mailto:lqh2382@fjirsm.ac.c;
mailto:peng.gao@fjirsm.ac.cn;
mailto:rjsa@mju.edu.cn

CONTENTS:

1. The loss function of weakly-supervised perovskite generative model.

2. The details of density functional theory (DFT) calculations

3. The details of SQLite3 databases

4. The computational resource of generative model and DFT calculations
5. The PXRD data of Mixed X-anion perovskite by Pymatgen

6. Structural descriptors for generative model: The Gram matrix

7. The details of supervised CNN generator (CNN-Gen) and weakly-
supervised perovskite GAN(WSP-GAN)

8. The loss function and error of quantum Auto-Encoder networks

9. The t-SNE based visualization for the results of SVM regression model

with linear and quantum kernel.

The details of density functional theory (DFT) calculations

GAN was first proposed by lan J. Goodfellow et al, which included two models:
a generator G and a discriminator D. Any differentiable function was theoretically
permitted by GAN. The initial algorithm of GAN was optimized according to the
cross entropy error function that was also used in the WSP-GAN. These loss functions
of G and D were listed here:

Fiy (D) =log D(x,) +log(1 - D(x) (D
Fyss (G) = (logl = D(x))

where the x, was the real data, and the x, was the synthetised data by G.

Considering the running of model was optimized by the gradient descent process of
Adam, we selected the opposite number of the loss function of D for our WSP-GAN.
Besides, for POSCAR t, the property data calculated by density functional theory

(DFT) was recorded as x/ ; the syntheised data by the generator was x’as well.

Further, we prepared a data structure of queue for the input of the discriminator. As
shown in the figure S1, before the training of WSP-GAN, we performed the
initialization of the input queue in the step 1 and randomly choose the n property data

F
t

by first principle calculation as the element of the input. When we accepted the x
the input queue updated itself according to the process of step 2. While the input
queue received the x”, it deleted the first element of the queue and insert this new one
at the end of this queue. Meanwhile, the queue updated by step 2 was regarded as the

new n-vectors x, and that by step 3 was the n-vectors x,. At last, the WSP-GAN

performed its optimized processing according the following loss function:

Fipes (D) = =(log D(x,) +log(1 = D(x) 3)

Fyss (G) = (logl = D(x) 4

Although we could theoretically reach the global optimization of the GAN when
D was equal to 0.5, a few of studies stated that the training of GAN was unstable and
they proposed some methods to improve their loss function, such as WGAN. The
model of WSP-GAN were running in the kernel of jupyter notebook, and we also
provided these .ipynb files in the Github.

Queue with n elements

1. Initialization: X, 2. Updating with, . | X, 3. Updating with the _ | X, Al
7 : the DFT data : /x| synthetised data : (x5
o randomly select xz ' 5 %
n DFT-property-
data as this queue; D ¥ delete :
‘ X, .:xn.. . x

n

Figure S1. The method to establish the input queue of the discriminator. The
processing to build this queue includes three steps: 1. Initialization, 2. updating
with the property data calculated by DFT and 3. updating with the property
data synthetised by the generator. In the step 2 and 3, we delete the element in
different site for updating the queue.

The details of density functional theory (DFT) calculations

All of the density functional theory (DFT) calculations in this work were
performed using the Vienna ab-initio simulation package (VASP) within the projector
augmented-wave approach[52,75]. The Perdew-Burke-Ernzehof generalized gradient
approximation exchange-correlation functional. A plane-wave energy cut-off of 550
eV were used for the CsPb(Br/I); with 2*2*2 and 3*2*1 supercells and the Si-Fe-Mn
alloy materials.[74]. Besides, a plane-wave energy cut-off of 400 eV were used for the
slab model of CsPb(B1/I);. The 4*4*4 Monkhorst-Pack grid for the Brillouin zone
sampling was used for calculation. The energy was converged to within 1*10
eV/atom and force within 0.01 eV/angstrom. We performed 4000 calculation for
mixed-atoms CsPb(Br/I); and Si-Fe-Mn alloy. The total energy, the binding energy,
the slab energy and the surface energy of these materials were calculated.

We tackled the batch process of the running of VASP with the bash shell and
python script and managed their results by the python with SQLite3[57].

The details of SQLite3 databases

The SQLite was a light-wight database with SQL database engine. We adopted it
to manage the structured data about the crystal structure and property data. For each
mixed-atoms materials in figure 3 in the context, we prepared four tables to storage
these property data calculated by DFT and WSP-GAN, the structure data in the
POSCAR files, respectively.

In the following, we listed the contents of SQLite for CPX321, CPX222, SFM
and (100) CPX in the Figure S3. These .sql files were available in our Github.

".open FILENAME" to reopen on a persistent database. Use ".open FILENAME" to reopen on a persistent database.
.open CPX222-10@8slab-surface.db sqlite> .open CPX321-Etotal-Ebinding.db
sqlite> .tables sqlite> .tables
DFT-properties-4-learning Structures_tab DFT-properties-4-learning Structures_tab
Mat-GAN-properties-4-all-structures Mat-GAN-properties-4-all-structures
sqlite> .schema Mat-GAN-properties-4-all-structures sqlite> .schema Mat-GAN-properties-4-all-structures
ICREATE TABLE IF NOT EXISTS 'Mat-GAN-properties-4-all-structures' CREATE TABLE IF NOT EXISTS 'Mat-GAN-properties-4-all-structures’|

(ID INTEGER PRIMARY KEY autoincrement, (ID INTEGER PRIMARY KEY autoilncrement,

flag TEXT NOT NULL, flag TEXT NOT NULL,

GAN_surface_energy REAL NOT NULL); GAN_total_energy REAL NOT NULL,
sqlite> .schema DFT-properties-4-learning GAN_binding_energy REAL NOT NULL)
ICREATE TABLE IF NOT EXISTS 'DFT-properties-4-learning’ sqlite> .schema DFT-properties-4-learning

(ID INTEGER PRIMARY KEY autoincrement, CREATE TABLE IF NOT EXISTS 'DFT-properties-4-learning’

flag TEXT NOT NULL, (ID INTEGER PRIMARY KEY autoincrement,

lattice matrix TEXT NOT NULL, flag TEXT NOT NULL,

formula TEXT NOT NULL, DFT_total _energy REAL NOT NULL

amount_element TEXT NOT NULL, DFT_binding_energy REAL NOT NULL

atomic_sites matrix TEXT NOT NULL); b H
sqlite> .schema Structures_tab sqlite> .schema Structures_tab
ICREATE TABLE IF NOT EXISTS 'Structures_tab* CREATE TABLE IF NOT EXISTS 'Structures_tab®

(ID INTEGER PRIMARY KEY autoincrement, (ID INTEGER PRIMARY KEY autoincrement,

flag TEXT NOT NULL, flag TEXT NOT NULL,
lattice_matrix TEXT NOT NULL, lattice matrix TEXT NOT NULL,
formula TEXT NOT NULL, formula TEXT NOT NULL,
amount_element TEXT NOT NULL, amount_element TEXT NOT NULL,
atomic _sites matrix TEXT NOT NULL); atomic sites matrix TEXT NOT NULL

@) (b)
Figure S2. The schema of SQLite3. The CPX222, CPX321 and SFM have the
same tables of databases. That of 100 CPX replaces the total energy and binding
energy with the properties related to surface energy. The label of flag is used to
query data across tables.

The computational resource of generative model and DFT calculations

In this section, we provided the computational time of each structure by VASP
and WSP-GAN (Figure S4) and the information of the hardware (Table S1) to
perform the calculation of VASP (cluster) and WSP-GAN (PC).

@Mat-GAN

175

150

125

100

Elapsed time (s)

Elapsed time (s)

(100) CPX

CPX321
Dataset

()

SFM-alloy

4000

3000

2000

1000

@DFT

CPX321
Dataset

(b)

SFM-alloy

Figure S3. The Elapsed time of each structure in the different dataset for WSP-
The Elapsed time of WSP-GAN is small than two seconds.
Meanwhile, that of VASP was beyond 100 seconds and even over 4000 seconds.

GAN and DFT.

Table S1 the Performance Comparison Between PC and Cluster.

Personal Computer(PC) Cluster
Architecture x86_64 x86 64
CPU op-mode(s) 32-bit,64-bit 32-bit,64-bit
Byte Order LittleEndian LittleEndian
CPU(s) 4 32
On-line CPU(s) list 0-3 0-31
Thread(s) per core 2 1
Core(s) per socket 2 16
Socket(s) 1 2
NUMA node(s) 1 2
Vendor ID AuthenticAMD Genuinelntel
CPU family 21 6
Model 48 85
Model name AMDASPRO-7600BR7,10ComputeCoresdC+6G | Intel(R)Xeon(R)Gold6129CPU@2.30GHz
Stepping 1 4
CPU MHz 1651.364 1399.945
CPU max MHz 3100 —_—
CPU min MHz 1400 —_—
BogoMIPS 6188.23 4605.03
Virtualization AMD-V VT-x
L1d cache 16K 32K
L1i cache 96K 32K

L2 cache 2048K 1024K
L3 cache — 22528K
NUMA node0 CPU(s) 0-3 0-15
NUMA nodel CPU(s) 16-31

The PXRD data of Mixed X-anion perovskite by Pymatgen

These results of powder X-ray diffraction (PXRD) about different crystals were
simulated by the Pymatgen package with CuKa radiation. The PXRD contained the
information of different crystal plane. Each peak of the PXRD stood for a crystal face

and was a vector with a diffraction angle (" =26) and intensity (I). As shown in

figure S3, we gave out the sample PXRD data for CsPb(B1/I); in the 3*2*1 supercell
and 2*2*2 supercell, the slab model of CsPb(B1/I); and Si-Fe-Mn alloy. These PXRD
data could reflect these change about the arrangement of mixed-atoms.

For different materials, we established the Crystal Plane Graph Network from the
PXRD data. Besides, this structural descriptor owned a significant role in the learning
of the supervised GCN and unsupervised WSP-GAN. We should choose the peaks
that changed significantly when the arrangement of mixed-atoms altered.

We used the inner product of peaks as the element of this matrix, which
corresponds to the Laplacian matrix. This matrix also stood for the graph networks,
which was a set of vertices and edges. As shown in the figure S5, we gave out the
sample of PXRD of these materials involved in our works. Besides, the completed
information of the PXRD in figure S5 were listed in the Table S2.

CPX321 CPX222

11T

"I JUL ‘In‘. e

1
11 |

r«\ |\
L) L

10 20 E

x 40 -4} .]

Figure S4. The Powder X-Ray Diffraction Simulated by Pymatgen. There are the
PXRD results of CsPb(Br/I); in the 3*2*1 supercell (CPX321), CsPb(Br/I); in the
2%2*%2 supercell (CPX222), Si-Fe-Mn alloy and the (100) slab model of
CsPb(Br/I);, respectively.

Structural descriptors for generative model: The Gram matrix

a Crystal Structure b Powder X-ray Diffraction ¢ Crystal Gram Matrix

i - | G=D"D

|
1 Select peaks

R
1 according to : -(9;![3)

:_ a threshold

07 +11 6O 1A, 60411,
00 +1,-1, 67 +10 00 +1,-1,
0.6, +0, 01, 6.6 +0,1, 6+ .

Intensity

I‘_vmatga::2::;;:1.1:1“i}1'ractiun =20
Figure S5. Schematic representing the PXRD data of crystal by the format of the
Gram matrix.} Perovskite material is given as an example with the auto-
workflow to establish the structural descriptor with its crystal structure and
POSCAR file as inputs. (a) The structural example of perovskite materials. (b)
The powder X-ray diffraction (PXRD) data of the structure in (a). (¢) The
Crystal Gram Matrix generated by PXRD data.

A graph structured data was defined as a non empty set of vertices and a set of
edges. The order of a graph (N) was the amount of vertices in this set; the size of the
graph (S) was defined as the number of edges; the degree of a vertex (D) was equal to
the amount of edges incident with a vertex. Herein, the graph was converted to
matrices. The degree matrix (Mp) was a diagonal matrix that contained the degree of
each vertex in a graph. The adjacency matrix (My) recorded the information of each

edges. Besides, The Laplacian matrix was define as M, — M ,. These were shown in

the figure S6.

Fully-connected Graph Degree matrix (My)
e o fV(vertex_ a) 0 0 0 0 A
0 V(vertex b) 0 0 0
@ 0 0 V(vertex c) 0 0
/70 0 0 0 Vwertexd 0
Degree: 4 e L 0 0 0 0 V(verrex,eJ)

Adjacency matrix (M,)

0 Vedge ba) V(edge ca) Viedge da) V(edge ea)\

Vedge ab) 0 Vedge cb) V(edge db) V(edge eb)

V(edge ac) V(edge bc) 0 V(edge dc) V(edge ec)

Viedge ad) V(edge bd) Vedge cd) 0 V(edge ed)
\V(edge _ae) V(edge be) V(edge ce) V(edge de) 0

J
Figure S6. The Diagram of Graph, Degree Matrix and Adjacency Matrix.

The details of supervised CNN generator(CNN-Gen) and weakly-

supervised perovskite GAN(WSP-GAN)

= Y !Activaion function’
1 1
| g ’ﬂ:: _— |
o L A giyl e
s |
gz wey) | EEmm |-

W, 1 1
I'“P“l SIZ€.$ ontpu!size:: : Pooling ou't’pu:rsue :
us2s w3) oo s,

s i |
| (= = | | Conv_ 2 I
sl e ()ptlnluu Adam I (G)

oupet E]]:'[]l Outl { Loss function: F] [(D)

g 5 S
b Synthesized properties by the generator: X, x Ve nais of ironosfics
VASP: first-principle calculation]ﬁProperties: x;’ i Updating the input queue with x

Figure S7. The architecture of weakly-supervised perovskite GAN. The
convolutional neural networks(Conv2d) and fully-connected neural networks(FC)
in the generator(WSP-Gen); the scheme of input property queues; the long short
term memory in the discriminator.

LSTM belonged to the Recurrent Neural Network (RNN). Herein, it was adopted as
the core layer of the discriminator and depended on the module of “torch.nn.LSTM”.
For each input queue, these inner parameters of LSTM were calculated:

i, =c(W,x, +b, +W,h,_, +b,) (5)

fi=cW,x, +b, +W, h,_ +b,) (6)
g, = tanh(Wigxt +bl.g + Whght . +bhg) (7)
o, =cW,x,+b, +W, h_, +b,)) (8)
=f®c, +i,®g, 9)

h, = o, ®tanh(c,) (10)

where h; was the hidden state of updating queue t, c¢; was the cell state of updating
queue t, X; was the input of updating queue t, h; is the hidden state of the layer of
updating queue t-1or the initial hidden state, and i, f;, g o, are the input, forget, cell,
and output gates, respectively. o is the sigmoid function, and ® was the Hadamard
product. The h; and c; were used to the processing of forward function in the LSTM.

Herein, the LSTM improved the ability to grab data distribution from the training
process of the input queue. Even if the training of WSP-GAN was performed with 3-5
samples, the effective gradient was calculated for the optimization of WSP-GAN. The
performance of WSP-GAN also depended on the equilibrium between the generating
ability of G and the discriminating ability of D.

Conv2d was the module of convolution layers in the torch. Herein, we listed the
details of the parameters of Conv2d, the output value of this layer with input size (N,
Cin, H, W) and output (N, Coyi, Hout, Woue) could be described as:

out(N,.C,,) =bias(C,,)+ >.." " wight(C,,, .k)®input(N,.k) (11)

.o
out]

where @ was the valid 2D cross-correlation operator, N was the batch size, C denoted
a number of channels, H was the height of input planes, and W was the width. The
Conv2d function owned these input parameters: in _channels, out channels,
kernel sizes, stride, padding, and so on, which could be found in the python file of
WSP-GAN in our github. “Stride” was a single number or a tuple and controlled the
stride of the cross-correlation; “padding” controlled the amount of implicit zero-
padding on both sides for padding number of points for each dimension.

In our works, the CNN layers worked as the core to deal with the PXRD data of
crystal structures. Benefiting from the invariability of translation and rotation of the
CNN, it was added into the supervised GCN and WSP-GAN.

The loss function and error of quantum Auto-Encoder networks

0.8 : T = -3.070
a sz c §
g g
£ Loss of fideli =
5 SS O elity = 3,068
E 0.6 4 E [
8 £ §
= =
] =2
= 2 -3.066
E04} = £
& E
=
E £ -3.064
° 2
£02f J 8
5 =X MAE = .15 meV
5 g 3062 RMSE = 0.18 meV
g & =
So0f i q
1 1 = -3.060 L I L :
0 200 400 -3.060 -3.062 -3.064 -3.066 -3.068 -3.070
Step Energy by VASP (Eyggp ¢Viatoms)
T T
= -3.070
b d =
(=]
0.980 i g
g
2 £
g = =~ E
a 09751 =) - - 2
= e = =
=] g ?]
z & = E
2 0.970f 2 3 - g
€ E E :
E ol £ | MAE=0.12mev
-y RMSE = 0.14 meV
0965 - ? L
2
1 1 = -3.060 L L e
train test -3.060 -3.062 -3.064 -3.066 -3.068 -3.070
The density of samples FEnergy by VASP (Fy,q, eV/atoms)

Figure S8. (a) the Loss function curve of quantum AutoEncoder with
quantum CNN as encoder network; (b) the density distribution of the fidelity of
samples; (c) and (d) the comparison chart of prediction results and sample labels
at the test-set and train-set, respectively.

The t-SNE based visualization for the results of SVM regression model

with linear and quantum kernel.

The details about SVM regression model(SVR) and SVR with quantum kernel(QSVR) could be

found via the link:

https://github.com/HuByHu/PCCP-code-2022

Latent dimension 2

3
: 3

SVR: Latent dimension 1

240.35

149.78

59.20

-31.38

-121.95

-212.53

Figure S9. A The t-SNE based visualization for the results of SVM regression
model with linear kernel.

Latent dimension 2

#‘3,@ a
o o Gy B
o . 02 k -
S a5t

QSVR: Latent dimension 1

-122.688

-122.692

-122.695

-122.698

-122.701

-122.705

Figure S9. B The t-SNE based visualization for the results of SVM regression
model with quantum kernel.

