Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Excited State Proton Transfer of Triplet State *p*-Nitrophenylphenol to Amine and Alcohol: A Spectroscopic and Kinetic Study

Xinghang Pan^a, Ting Han^a, Jing Long^a, Binbin Xie^b, Yong Du^c, Yanying Zhao^{a,d}, Xuming Zheng^a, Jiadan Xue^{*a,d}

^aDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China ^bZhejiang Normal University, Hangzhou Institute of Advanced Studies, Hangzhou 310018, China ^cCentre for THz Research, China Jiliang University, Hangzhou, 310018, China ^dKey Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China

Content

Figure 1S. (A) UV-Vis spectra evolution for NO_2 -Bp-OH under different pH conditions in MeCN:H ₂ O=1:9 (v:v) solution. (B) Absorptions at 328 and 426 nm associated with NO ₂ -Bp-OH and its deprotonated form NO ₂ -Bp-O ⁻
Figure 2S . UV-vis absorption spectra of NO_2 -Bp-OH in acetonitrile containing 0.4 mM Bu ₄ NOH and varying percentage (v%) of methanol in the solution
Figure 3S . Structures of free NO ₂ -Bp-O ⁻ molecule and two types of hydrogen-bonded complexes: NO ₂ -Bp-O (H ₂ O) _n (n=1~3) and (H ₂ O) _n NO ₂ -Bp-O ⁻ (n=1, 2)
Figure 4S . Plot of pseudo first-order decay rate constants of ³ NO ₂ -Bp-OH versus concentrations of ferrocene with a linear fit
Figure 5S. Transient absorption spectra recorded at selected time delays upon excitation of NO ₂ -Bp-OH in acetonitrile with <i>t</i> -butylamine (NB) in the solution. Concentrations of NB have been depicted in the graphs
Figure 6S . The kinetic curves (black) measured at 650 and 490 (480) nm in the presence of various concentrations of <i>t</i> -butylamine (NB). Fitted curves (in red) obtained with a single exponential function (650 nm) and a bi-exponential function (490 nm). The influence of laser pulse duration was also included in those with fast decay. The concentrations of NB are displayed in the corresponding graphs
Figure 7S . Transient absorption spectra after excitation of NO ₂ -Bp-OH (0.04 mM) in acetonitrile in the presence of 18.9 mM NB under argon purged. (Inserted) the expand view of the 6.0 μ s spectrum9
Figure 8S . Plot of pseudo first-order decay rate constants of ³ NO ₂ -Bp-OH vs. concentrations of <i>t</i> -butylamine (NB) with a linear fit
Figure 9S . Kinetics at 520 nm at various concentrations of NO_2 -Bp-O ⁻ in the benzophenone (4.1 mM) sensitization experiments. NO_2 -Bp-O ⁻ was produced in the presence of Bu ₄ NOH, and confirmed by UV-Vis spectra. A bi-exponential function was used to fit the kinetic curve so that the decay time constant could be found accurately
Figure 10S . Transient absorption spectra after 355 nm excitation of NO ₂ -Bp-O ⁻ (40 μ M) alone in solution. NO ₂ -Bp-O ⁻ was produced in the presence of Bu ₄ NOH, and confirmed by UV-Vis spectra11
Figure 11S . (A) Fluorescence spectra of NO ₂ -Bp-OH (40 μ M) in acetonitrile containing various NB concentration. NO ₂ -Bp-O ⁻ does not produce any detectable emission bands. (B) Normalized fluorescence spectra without NB and with 945 mM NB in solutions
NO_2 -Bp-OH has a maximum emission at 534 nm and a quantum yield of 0.004 in acetonitrile. The intensity of fluorescence decreases as NB concentration increases, and no new emission bands are observed. This observation is consistent with the finding that excitation of NO_2 -Bp-O ⁻ alone in solution does not produce detectable fluorescence

References:	
Determination of the acidity (pK_a^*) of ³ NO ₂ -Bp-OH20	
Table 3S. Selected structural parameters of the NO ₂ -Bp-O (H ₂ O) _n (n=1~3) and (H ₂ O) _n NO ₂ -Bp-O ⁻ (n=1,2) hydrogen-bonded complex predicted by DFT calculation at the level of B3LYP/6- $31+G(d,p)$. ^a	
Table 2S . Vibrational frequencies of NO ₂ -Bp-O (H ₂ O) _n (n=1~3) and (H ₂ O) _n NO ₂ -Bp-O ⁻ (n=1,2) hydrogen-bonded complex predicted by DFT calculation at the level of B3LYP/6-31+G(d,p)18	
Table 1S. Hydrogen bond lengths and hydrogen-bonding energies of NO ₂ -Bp-O (H ₂ O) _n (n=1~3) and $(H_2O)_n \cdots NO_2$ -Bp-O ⁻ (n=1,2) complexes predicted by DFT calculation at the level of B3LYP/6-31+G(d,p) in acetonitrile with PCM model	
Figure 15S. T_1 state NO ₂ -Bp-OH (MeOH) _n (n=1~3) hydrogen-bonded complexes in acetonitrile used in the potential energy scan	
Figure 14S. The decay curves (black) of ³ NO ₂ -Bp-OH monitored at 650 nm in the presence of various concentrations of ethanol, the proportion of which is displayed in the graph. The single exponential function (in red) was used to fit the decay kinetics and the time constants are shown in the graphs.	
Figure 13S. Transient absorption spectra recorded at selected time delays upon excitation of NO ₂ - Bp-OH in acetonitrile with ethanol in the solution. The volume proportions of ethanol are displayed in the graphs	
Figure 12S. The decay curves (black) of ³ NO ₂ -Bp-OH monitored at 650 nm in the presence of various concentrations of methanol, the proportion of which is displayed in the graph. The single exponential function (in red) was used to fit the decay kinetics and the time constants are shown in the graphs	

Figure 1S. (A) UV-Vis spectra evolution for NO₂-Bp-OH under different pH conditions in MeCN:H₂O=1:9 (v:v) solution. (B) Absorptions at 328 and 426 nm associated with NO₂-Bp-OH and its deprotonated form NO_2 -Bp-O⁻.

Figure 2S. UV-vis absorption spectra of NO_2 -Bp-OH in acetonitrile containing 0.4 mM Bu₄NOH and varying percentage (v%) of methanol in the solution.

Figure 3S. Structures of free NO₂-Bp-O⁻ molecule and two types of hydrogen-bonded complexes: NO₂-Bp-O⁻...(H₂O)_n (n=1~3) and (H₂O)_n...NO₂-Bp-O⁻ (n=1, 2).

Figure 4S. Plot of pseudo first-order decay rate constants of ³NO₂-Bp-OH versus concentrations of ferrocene with a linear fit.

Figure 5S. Transient absorption spectra recorded at selected time delays upon excitation of NO_2 -Bp-OH in acetonitrile with *t*-butylamine (NB) in the solution. Concentrations of NB have been depicted in the graphs.

Figure 6S. The kinetic curves (black) measured at 650 and 490 (480) nm in the presence of various concentrations of *t*-butylamine (NB). Fitted curves (in red) obtained with a single exponential function (650 nm) and a bi-exponential function (490 nm). The influence of laser pulse duration was also included in those with fast decay. The concentrations of NB are displayed in the corresponding graphs.

Figure 7S. Transient absorption spectra after excitation of NO_2 -Bp-OH (0.04 mM) in acetonitrile in the presence of 18.9 mM NB under argon purged. (Inserted) the expand view of the 6.0 µs spectrum.

Figure 8S. Plot of pseudo first-order decay rate constants of ${}^{3}NO_{2}$ -Bp-OH vs. concentrations of *t*-butylamine (NB) with a linear fit.

Figure 9S. Kinetics at 520 nm at various concentrations of NO_2 -Bp-O⁻ in the benzophenone (4.1 mM) sensitization experiments. NO_2 -Bp-O⁻ was produced in the presence of Bu₄NOH, and confirmed by UV-Vis spectra. A bi-exponential function was used to fit the kinetic curve so that the decay time constant could be found accurately.

Figure 10S. Transient absorption spectra after 355 nm excitation of NO₂-Bp-O⁻ (40 μ M) alone in solution. NO₂-Bp-O⁻ was produced in the presence of Bu₄NOH, and confirmed by UV-Vis spectra.

Figure 11S. (A) Fluorescence spectra of NO₂-Bp-OH (40 μ M) in acetonitrile containing various NB concentration. NO₂-Bp-O⁻ does not produce any detectable emission bands. (B) Normalized fluorescence spectra without NB and with 945 mM NB in solutions.

 NO_2 -Bp-OH has a maximum emission at 534 nm and a quantum yield of 0.004 in acetonitrile. The intensity of fluorescence decreases as NB concentration increases, and no new emission bands are observed. This observation is consistent with the finding that excitation of NO_2 -Bp-O⁻ alone in solution does not produce detectable fluorescence.

Figure 12S. The decay curves (black) of ${}^{3}NO_{2}$ -Bp-OH monitored at 650 nm in the presence of various concentrations of methanol, the proportion of which is displayed in the graph. The single exponential function (in red) was used to fit the decay kinetics and the time constants are shown in the graphs.

Figure 13S. Transient absorption spectra recorded at selected time delays upon excitation of NO_2 -Bp-OH in acetonitrile with ethanol in the solution. The volume proportions of ethanol are displayed in the graphs.

Figure 14S. The decay curves (black) of ${}^{3}NO_{2}$ -Bp-OH monitored at 650 nm in the presence of various concentrations of ethanol, the proportion of which is displayed in the graph. The single exponential function (in red) was used to fit the decay kinetics and the time constants are shown in the graphs.

Figure 15S. T_1 state NO₂-Bp-OH^{...}(MeOH)_n (n=1~3) hydrogen-bonded complexes in acetonitrile used in the potential energy scan.

Complex abbreviation	Hydrogen length (Å)	bond	ΔH (kcal/mol)
NO ₂ -Bp-O ⁻ (H ₂ O) ₁	1.6567		6.6
NO_2 -Bp-O $(H_2O)_2$	1.6833 1.6834		12.7
NO ₂ -Bp-O (H ₂ O) ₃	1.7098 1.7303 1.7345		17.0
$(H_2O)_1$ NO ₂ -Bp-O ⁻	1.8862		2.6
(H ₂ O) ₂ NO ₂ -Bp-O ⁻	1.8644 2.0035		6.6

Table 1S. Hydrogen bond lengths and hydrogen-bonding energies of NO₂-Bp-O^{-...}(H₂O)_n (n=1~3) and $(H_2O)_n \cdots NO_2$ -Bp-O⁻ (n=1,2) complexes predicted by DFT calculation at the level of B3LYP/6-31+G(d,p) in acetonitrile with PCM model.

Complex	Calc. values (unscaled)			
abbreviation	Freq. (cm ⁻	Raman		
	1)	Activity		
Free NO ₂ -Bp-O ⁻	1338	10218		
	1601	2125		
NO_2 -Bp-O (H ₂ O) ₁	1604	9224		
	1335	8273		
NO_2 -Bp-O ⁻ (H ₂ O) ₂	1607	18327		
	1332	9982		
NO ₂ -Bp-O (H ₂ O) ₃	1610	25302		
	1330	9856		
$(H_2O)_1$ ···NO ₂ -Bp-O ⁻	1344	9748		
$(H_2O)_2$ NO ₂ -Bp-O ⁻	1348	10658		

Table 2S. Vibrational frequencies of NO₂-Bp-O^{-...}(H₂O)_n (n=1~3) and (H₂O)_n...NO₂-Bp-O⁻ (n=1,2) hydrogenbonded complex predicted by DFT calculation at the level of B3LYP/6-31+G(d,p).

The hydrogen bond at the nitro group causes the (unscaled) frequency of C–C + C–N stretching from 1338 cm⁻¹ in free NO₂-Bp-O⁻ to 1344 cm⁻¹ for one water and further to 1348 cm⁻¹ for two water in the $(H_2O)_n$...NO₂-Bp-O⁻ (n=1, 2) complex.

 enaca compren pr				20211:001	S(1,p).
Bond length	Simple	$CO-1H_2O$	$CO-2H_2O$	$CO-3H_2O$	NO_2-2H_2O
(Å)	anion				
C1-C2	1.425	1.422	1.420	1.417	1.428
C2-C3	1.382	1.384	1.385	1.386	1.379
C3-C4	1.406	1.404	1.403	1.402	1.411
C4-C5	1.406	1.404	1.403	1.402	1.411
C5-C6	1.382	1.384	1.385	1.386	1.379
C6-C1	1.425	1.422	1.420	1.417	1.429
C1-C7	1.456	1.461	1.465	1.470	1.449
C7-C8	1.423	1.420	1.417	1.414	1.427
C8-C9	1.380	1.383	1.385	1.388	1.377
C9-C10	1.444	1.436	1.430	1.423	1.446
C10-C11	1.444	1.436	1.430	1.423	1.446
C11-C12	1.380	1.383	1.385	1.388	1.377
C12-C7	1.423	1.419	1.417	1.414	1.427
C10-O21	1.279	1.291	1.303	1.317	1.275
C4-N22	1.428	1.434	1.439	1.444	1.411
N22-O23	1.250	1.247	1.245	1.243	1.260
N22-O24	1.250	1.247	1.245	1.243	1.255

Table 3S. Selected structural parameters of the NO₂-Bp-O^{-...}(H₂O)_n (n=1~3) and (H₂O)_n...NO₂-Bp-O⁻ (n=1,2) hydrogen-bonded complex predicted by DFT calculation at the level of B3LYP/6-31+G(d,p).^a

^aStructure geometries indicated by complex abbreviations are listed below.

The hydrogen bond formed between the nitro group and water significantly shortens the bond lengths of C–N from 1.428 Å to 1.411 Å and C–C (bridge between two phenyl rings) from 1.456 Å to 1.449 Å. The shorter bond causes the stretching vibrations to shift to blue.

Determination of the acidity (pK_a^*) of ³NO₂-Bp-OH

The acid-base reaction in the triplet state of NO₂-Bp-OH can be accounted for by the following scheme, where τ_0 and τ_0' denote the lifetimes of ³NO₂-Bp-OH and ³NO₂-Bp-O⁻ respectively, k₁ and k₂ the dissociation and protonation rate constants in the triplet state, respectively.

If we assume that the rates of proton transfer reactions $(k_1[NB] \text{ and } k_2[NBH^+])$ in the triplet state are very fast in comparison with the triplet decay rates $(\tau_0)^{-1}$ and $(\tau_0')^{-1}$, respectively (that is, an acidbase equilibrium is established within the triplet lifetime), the following equations based on that proposed by Ware¹ can be applied to the present system. Where τ denotes the observed triplet lifetime and K_a the equilibrium constant in the triplet, which is equal to k_1/k_2 .

$$(\tau^{-1} - \tau_0^{-1})^{-1} = \{(\tau_0)^{-1} - \tau_0^{-1}\}^{-1}(1 + \frac{1}{[NB]} \times \frac{1}{K_a})$$

Plot $(\tau^{-1} - \tau_0^{-1})^{-1}$ as a function of [NB]⁻¹as following (τ is the decay time constants at 650 nm for ³NO₂-Bp-OH when [NB] \geq 1.428 mM in Table 2). Fit the plot by a linear function. From the slope interceptand intercept, the value of $K_a = islope = 22$ can be determined. Since the pK_a(NB)=18.1 in acetonitrile,² the pK_a*(³NO₂-Bp-OH) can be calculated to be 16.8.

References:

- (1) W. Ware, R. D. Watt and J. D. Holmes, J. Am. Chem. Soc., 1974, 96, 7853-7680.
- (2) B. G. Cox, *Acid and Bases: Solvent Effects on Acid-Base Strength*, Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP, United Kingdom, 2013.