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1. Input of QMLMaterial for vacancy in materials and nanoparticles

Figure S1 shows an example of the QMLMaterial input for the active learning (AL) of 

CaTiO3. The input is organized in two blocks, where input 1 (a) controls the system and 

calculator, while input 2 (b) drives the settings of the machine learning. 

The first line at the ‘structure_file_xyz’ reads the xyz file with the initial configuration of 

the pristine CaTiO3 (Ca8Ti8O24), which in this case is called Ca8Ti8O24.opt.xyz. Then the 

atomic symbol of the atom to be removed is set up in ‘atom_type_to_be_removed’. By 

default, ‘atom_type_to_be_doped’ is set up to ‘[]’. After that, we insert the index of the XYZ 

coordinates of the atoms that will be removed: ‘atom_index_list’’. The final part of input 

1 calls for the calculator to be used for the local optimization calculations. Here, the DFT 

method in quantum espresso (QE) was employed for the energy evaluations in a PBC 

system.  Finally, the QMLMaterial supports periodic and cluster calculations, which can 

be selected with the system_type flag. 

The machine learning controller in input 2 starts by reading the percent of the dataset 

that will be used for testing (test_size flag), the cross-validation procedure to estimate 

the skill of the model in generating new data (sample), as well as the number of cross-

validation splits (n_splits). If the flag is_max_true is active (“is_max_true = True”), then a 

maximization of the target property will be performed; otherwise, minimization will be 

done. In all of our AL applications we have scaled the total energy to be in a range 

between 0 to 200 since we have observed it results in better regression models. 

Therefore, we perform a maximization in this scaled energy space. The 

opt_flow_controler defines many of the parameters that drive the AL, such as the 

maximum number of iterations (n_iteration), the number of energy evaluations in each 

iteration (iteration_step), the size of the initial dataset, the type of acquisition functions, 

the descriptor, the size of the virtual space, and the path where the calculations will be 

performed. Finally, the param_grd controls the type of machine learning model and its 

parameters. A Gaussian process model (‘gpr__kernel’, ‘gpr__alpha’, etc.) was trained and 

used in the case below.
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Figure S1. The mnemonic input of QMLMaterial for vacancies structural 

elucidation. (a) INPUT-01 deals with the molecular/solid system (cluster or 

periodic), the calculator (i.e. DFTB+, deMon2k or Quantum Espresso (QE)) 

and the symbol of the atoms that will be removed which defines the discrete 

search space. (b) INPUT-02 deals with the machine learning model, the active 

learning parameters and the sampling process (i.e., 

“n_unmeasured_random_configurations” that defines the non-computed 

(virtual) structures where the ML inference is made on).
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2. Statistical Regression
The idea behind statistical regression is to obtain N observed properties y = (y(1), 

…,y(n)), i = 1, …., N; to describe y statistically, the descriptor x(i) = (x1
(i), …,xk

(i)), with K 

variables is required. The property in our case is the total energy obtained from quantum 

chemistry methods: DFT, SCC-DFTB, etc. This results in a matrix X of dimension (N × K), 

called the feature matrix which is associated with the one-dimensional vector y (the 

objective function) of dimension (N). Here we define descriptor x(j) = (x1
(j), …,xk

(j)) in the 

virtual space ( ): j = 1, …, ; where j stands for the j-th virtual (non-observed) 𝑁 𝑘
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑁 𝑘

𝑣𝑖𝑟𝑡𝑢𝑎𝑙

structure.

To model the desired problem in this manner, several surrogate models, such 

as the Artificial Neural Network (ANN) can be used by utilizing high level libraries, 

such as scikit-learn1. 

After performing the regression, the statistical model is obtained and 

represented as:

,𝑦̀ = 𝑓̂(𝑋) (1)

where  is the vector with the predicted properties and  is the statistical model 𝑦̀ 𝑓̂(𝑋)

(the predictor)designed from the MLP regressor.

Usually, to obtain a model without data bias, the matrices X and y – which 

define the initial data to obtain and test the ML models (Xl,yl) – are split into two other 

matrices: (Xtrain, ytrain), which are used to train the statistical model and (Xtest, ytest) to 

validate it. 

In order to obtain the average ((x(i)) for the computed structures and (x(j)) 

for the non-computed, virtual, structures) and the uncertainty (the standard 

deviation (x(i)) and (x(j))), the matrices (Xtrain, ytrain) are partitioned K times for K-

fold cross-validation (CV) or B times for non-parametric bootstrap (BS). For each 

partition p (in a total space of P=K or P=B) a statistical model is obtained. Hence: 

, p = 1, …, P. Then, for each descriptor in the observed data set x(i) (or for 𝑦̀𝑝 = 𝑓̂(𝑋)

each descriptor j in the non-computed or virtual structures space: x(j)) the average 
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(x(i)) (or (x(j)) for the virtual structures) and the standard deviation (x(i)) (or 

(x(j))) are obtained, as illustrated in figure S2 for the data in the observed space. 

Figure S2- Plot of the observed y(i) and predicted (x(i)) target property. The use of 𝑦̀

Gaussian process allows us to have a regression model for each data point x(i) 

represented from the mean (x(i))  and the standard deviation (x(i)). The abscissa is 

the observed property and the ordinate the predicted one. The same for the 

unexplored space descriptors for inference and decision making: exploitation ((xi)) 

and exploration ((x(j))).

The mean (x(j)) and the standard deviation (x(j)) for each descriptor entry in 

the non-observed (virtual) space (whose dimension is defined by ) will be used to 𝑁 𝑘
𝑣𝑖𝑟𝑡𝑢𝑎𝑙

obtain the acquisition function2, 3 which is used to indicate the next candidate to be 

computed. The next candidate is, then, incorporated in the initial descriptor matrix: 

(Xtrain+1, ytrain+1) and the iteration process continues one step more until the optimization 

of the target property.

3. Kernel functions 
The GP for regression is a non-parametric Bayesian model widely employed in 

supervised learning4. It uses a prior’s covariance that needs to be specified by passing a 

kernel object. In this work we use two customized kernel functions, obtained from 

common kernels implemented in scikit-learn5 library,
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    (2)𝑘𝑒𝑟𝑛𝑒𝑙01 = 𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑊ℎ𝑖𝑡𝑒𝑘𝑒𝑟𝑛𝑒𝑙,

 

and

.                                    (3)𝑘𝑒𝑟𝑛𝑒𝑙02 = 𝐶 ∙ 𝑅𝐵𝐹

In equation 2 the DotProduct, is given by,

,          (4)𝑘𝐷𝑜𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡(𝑥𝑖,𝑥𝑗) =  𝜎2
0 +  𝑥𝑖 ∙ 𝑥𝑗

where  is a parameter that controls the inhomogeneity of the kernel. The uses of the 𝜎2
0

WhiteKernel in 2 is to better estimate the noise level of the data. The second kernel (eq. 

3) combines the constant kernel (C), and the radial-basis function kernel (RBF) given by

,           (5)
𝑘𝑅𝐵𝐹(𝑥𝑖,𝑥𝑗) = 𝑒𝑥𝑝( ‒  

𝑑(𝑥𝑖,𝑥𝑗)
2

2𝑙2 )
which is parameterized by the length-scale parameter (l).

4. Surface (3D) view of the acquisition functions

Figure S3- The surface (3D) plot of: (left) the expected improvement (EI) and (right) 

the probability of improvement (PI) as a function of the target prediction, T = (fmin - 

X), and the uncertainty, Y = (X). The minimum property observed so far is fmin;  
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and  are, respectively, the mean and the standard deviation of the prediction 

obtained from GP for the structure configuration, represented as descriptor, X. 

Figure S4- The surface (3D) plot of the lower confidence bound (LCB): XCX, 

with C = 0, 1, 3 and 5. Where,  and  are, respectively, the mean and the standard 

deviation of the prediction obtained from GP for the structure configuration, 

represented as descriptor, X. 
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5. PDOS of a local minimum above the putative global minimum (GM)

Figure S5- (A) The pristine CaTiO3 and (B) some local minima CaTiO2.625 from DFT 

whose three oxygen vacancy were made by hand. This structure is 0.85 eV above the 

putative GM found by AL (Fig. 14). Two tri coordinated and one tetra coordinated O 

are removed. 
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Figure S6- Projected density of states (PDOS) on atoms for the pristine CaTiO3 (a and 

b) and for a local minima, above the global minimum, of the modified perovskite, 

CaTiO2.625 (c and d). Total energy: -2433.43897078 Ry.
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