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Figure S1: Comparison of NMR data obtained from simulation (dgy,) with experimental

(Oexp) for (a) Ca chemical shift, (b) CB chemical shift, (¢) 3/nu_nq coupling constants of ABs,

monomer, and (d) Ca chemical shift, (¢) Cp chemical shift, (f) 3/xy_nq coupling constants of

APy, protofibril.
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Figure S2: The probability distribution graph of RMSD for A4, monomer and Afs,

monomer + rk10 complex.
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Figure S5: The per-residue helix, f—sheet percentage in AB4, monomer and AP, monomer +

rk10 complex are shown in panel a, and b, respectively.
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Figure S6: The side chain-side chain contact maps between A4, monomer residues in the
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absence and presence of rk10. The cut-off distance between atoms used to define contact is
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Table S1: Molecular docking analysis of rk10 with ABs, monomer.

Peptide Protein AutoDock A4, residues involved in the APy, residues
structure  binding intermolecular H-bonding involved in
energy interactions intermolecular
(kcal/mol)  Residue Atom® Distance  hydrophobic
(nm) contacts
k10 ABas 53 Glu3 NH:0 023 Glu3, His6,
monomer His6 NH: O 0.24 Asp7, Sers,
NH:0 0.9 Tyrl0, Glull,
Glull OH:OEl 0.9 Yvall2Hisl4
NH: OE1  0.23 GInl5, Phel9
NH: OE2  0.22
GInl5 NH: OE1 0.23
CO: 1HE2 0.23
CO: 1HE2 0.25
CO:2HE2 0.25

“The PDB ID for AP, monomer used in the present study is 1IYT. *The atoms on left represent ligand atoms

and on the right represent APy, residue atoms.
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Table S2: Molecular docking analysis of rk10 with A4, monomer and protofibril structures

using AutoDock Vina, Glide, and MVD.

AutoDock Vina

Glide

MVD

AB4, monomer + rk10 complex

Binding energy (kcal/mol)

Hydrogen bonds

Hydrophobic contacts

APy, protofibril + rk10 complex

Binding energy (kcal/mol)
Hydrogen bonds

Hydrophobic contacts

5.3

Glu3, His6, Glull,
GInl5

Glu3, His6, Asp7,
Ser8, Tyrl0,
Glull, Vall2,
His14, GInl5,
Phel9

6.9

Vall8 (A), Phe20
(A), Glu22 (A),
Ala30 (A)

Lys16 (A), Leul7
(A), Vall8 (A),
Phel9 (A), Phe20
(A), Ala21 (A),
Glu22 (A), Asp23
(A), Val24 (A),
Asn27 (A), Lys28
(A), Ala30 (A),
Ile31 (A), 11e32 (A)

-5.0
Glull, GInl5

Asp7, Vall2,
His14, Lysl16,
Phel9, Phe20,
Asp23

-7.4

Vall8 (A), Phe20
(A), Glu22 (A),
Ala30 (A), 1le32
(A)

Leul7 (A), Vall8
(A), Phel9 (A),
Ala2l (A), Asp23
(A), Asn27 (A),
Gly29 (A), 1le31
(A), Val40 (A),
Ala42 (A)

-15.3

Glu3, His6, Asp7,
GInl5

Glu3, Phe4, His6,
Asp7, TyrlO,
Glull, Vall2,
GlInl5, Phel9,
Phe20

-30.3

Phe20 (A), Glu22
(A), Asp23 (A),
Ala30 (A),

Phel9 (A), Phe20
(A), Glu22 (A),
Asp23 (A), Asn27
(A), Lys28 (A),
Gly29 (A), Ala30
(A), Ile31 (A),
Ala42 (A)
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Table S3: The secondary structure component statistics of dual simulation for AB4, monomer

and AB4, monomer with rk10.

System Simulation Secondary structure component %
Helix“ B—sheet?  Coil Bend Turn
A4, monomer 1 546159 12+£066 27+1.52 9+£0.75 82+0.71
2 504+4.07 22+044 282+1.66 13+238 62=+0.52
A4 monomer 1 62.6+1.46 0=£0 224+0.88 82+1.24 6.8+0.44
+1k10 2 58.6+2.43 02+0.18 226+159 92+1.48 94+1.08

“Helix= o~helix + n—helix + 3 ¢-helix; ’B—sheet= B-strand + p-bridge
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Table S4: Molecular docking analysis of rk10 with A4, protofibril.

Peptide Protein AutoDock APy, residues involved in APy, residues
structure  binding intermolecular hydrogen involved in
energy bonding intermolecular
(kcal/mol) Residue Atom?  Distance hydrophobic
(nm) contacts
k10 AP -6.9 Vall§ (A) NH:O 0.19 Lys16 (A), Leul?
protofibril Phe20 (A) O:NH 0.23 (A), Vall8 (A),
NH: O 0.26 Phel9 (A), Phe20
Glu22 (A) NH: O 0.30 (A), Ala21 (A),
Ala30 (A) NH: O 0.24 Glu22 (A), Asp23
NH: O 0.24 (A), Val24 (A),

Asn27 (A), Lys28
(A), Ala30 (A),
Ile31 (A), 1e32 (A)

“The PDB ID for APy, protofibril used in the present study is SOQV. ?The atoms on left represent ligand atoms
and on the right represent APy, residue atoms.
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Table S5: The interchain binding free energy (in kcal/mol) of the AP4, protofibril in the
absence and presence of rk10. The energy values are averaged over the three pairs of

neighbouring chains (i.e., chain A—B, chain B—C and chain C-D).

Energy components Binding free energy (kcal/mol)
A4, protofibril APy, protofibril + rk10
AEyaw -1543+7.0 ~141.3+£6.9
AEelec 13.2+0.5 -74+59
AEypf —141.1+£7.5 —148.7+12.8
AGy 142.4 £25.5 155.9+£22.3
AGps -149.6 £11.7 1423 +11.9
AGion” ~7.2+13.8 13.6 £ 10.4
AGpinding ~148.3+21.3 ~135.1+2.4

aAEMM: AEZVdW + AEelec; bAGsolv: AGps + Aans; CAGbinding: AEMM+ AGSUIV

S19



Table S6: The interchain (i.e., chain A-B, chain B—C and chain C-D) binding free energy (in

kcal/mol) of the A4, protofibril in the absence and presence of rk10.

SYStemS Chain AEvdw AEelec AE‘MMa AGDS AGmos AGsa]vb AGbindin °
APy A-B -1532+74 -13.7+30.2 -166.9+37.6 157.7+36.9 -151.8+133 59+23.6 -161.0+ 14.0
protofibril B-C -153.2+6.7 522+18.2 -101.0+£11.5 123.4=+23.1 -1457+112 223+119 -123.3+234
C-D -156.4+7.0 1.1+13.6 -1553+6.6 146.2 + 16.6 -151.2+10.7 -5.0+5.9 -160.3+12.5
APy A-B -127.9+7.1 -30.7+18.4 -158.6+255 1763 +21.0 -1349+129 414+8.1 -117.2+17.4
protofibril B-C -143.4+6.9 6.9+16.6 -136.5+9.7 136.3 £23.6 -1428+11.6 —6.5+12.0 -143.0+21.7
+1k10 C-D -152.7+6.7 1.6+19.4 -151.1+12.7 1552+22.3 -149.1+112 6.1=+11.1 -145.0+1.6

AEyn= AE 4+ AE e PAGs= AG s+ AG 55 “AGhinging= AEyy+ AGypp,
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