### **Supplementary Information for:**

# Design of structure and relevant properties of semiclathrate hydrates by

#### partly asymmetric alkylammonium salts

Sanehiro Muromachi, \*<br/>a Masato Kida, <br/>b Masato Morimoto,  $^{\rm c}$  Shogo Yamane, <br/>d and Satoshi

Takeya<sup>e</sup>

a. Energy Process Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, 305-8569, Japan.

b. Faculty of Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido, Japan.

c. Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

d. National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan.

\* Author to whom correspondence should be addressed. (S. M.)

E-mail: s-muromachi@aist.go.jp Tell: +81-29-861-4287

Fax: +81-29-861-8706

#### 1. Melting temperature data

Table S1. Melting temperature data in the system of  $N_{3444}$ Br where *x*, *w*, *n*<sub>w</sub>, *T*<sub>eq</sub> and *U* denote mole fraction of salt, mass fraction of salt, molar ratio of water to salt, melting temperature and uncertainty with 95% reliability.

| x      | U(x)   | W     | n <sub>W</sub> | $T_{\rm eq}/{ m K}$ |
|--------|--------|-------|----------------|---------------------|
| 0.0033 | 0.0004 | 0.054 | 299            | 272.5               |
| 0.0066 | 0.0004 | 0.102 | 150            | 271.9               |
| 0.0099 | 0.0004 | 0.146 | 99.9           | 271.4               |
| 0.0123 | 0.0004 | 0.176 | 80.2           | 270.9               |
| 0.0141 | 0.0004 | 0.197 | 70.0           | 270.5               |
| 0.0164 | 0.0004 | 0.222 | 59.8           | 270.8               |
| 0.0197 | 0.0004 | 0.255 | 49.9           | 271.9               |
| 0.0233 | 0.0005 | 0.290 | 41.8           | 272.5               |
| 0.0257 | 0.0005 | 0.311 | 37.9           | 272.9               |
| 0.0287 | 0.0005 | 0.336 | 33.8           | 273.4               |
| 0.0304 | 0.0005 | 0.349 | 31.9           | 273.5               |
| 0.0323 | 0.0005 | 0.364 | 29.9           | 273.7               |
| 0.0345 | 0.0006 | 0.379 | 28.0           | 273.7               |
| 0.0370 | 0.0006 | 0.397 | 26.0           | 273.8               |
| 0.0402 | 0.0006 | 0.418 | 23.9           | 273.8               |
| 0.0477 | 0.0007 | 0.462 | 20.0           | 273.7               |
| 0.0625 | 0.0009 | 0.533 | 15.0           | 272.7               |
| 0.0910 | 0.0014 | 0.632 | 10.0           | 270.5               |

Table S2. Melting temperature data in the system of  $N_{4445}Br$  where  $x, w, n_w, T_{eq}$  and U denote mole fraction of salt, mass fraction of salt, molar ratio of water to salt, melting temperature and uncertainty with 95% reliability.

| x      | U(x)  | W     | n <sub>W</sub> | $T_{\rm eq}/{ m K}$ |  |
|--------|-------|-------|----------------|---------------------|--|
| 0.0036 | 0.001 | 0.063 | 277            | 275.0               |  |
| 0.0069 | 0.001 | 0.115 | 143            | 277.9               |  |
| 0.0108 | 0.001 | 0.169 | 91.9           | 279.5               |  |
| 0.017  | 0.002 | 0.24  | 59.0           | 280.7               |  |
| 0.019  | 0.002 | 0.27  | 50.7           | 280.8               |  |
| 0.022  | 0.002 | 0.29  | 45.1           | 280.9               |  |
| 0.024  | 0.002 | 0.32  | 40.1           | 280.9               |  |
| 0.030  | 0.002 | 0.37  | 32.2           | 280.9               |  |
| 0.034  | 0.002 | 0.40  | 28.0           | 280.8               |  |
| 0.044  | 0.002 | 0.46  | 21.5           | 280.7               |  |
| 0.057  | 0.002 | 0.53  | 16.6           | 280.2               |  |



Fig. S1. Pictures of the crystals obtained in this study. (a)  $N_{4445}Br$  hydrate at x = 0.0108 (b)  $N_{4445}Br$  hydrate at x = 0.0251 (c)  $N_{4445}Br$  hydrate at x = 0.057 (d)  $N_{3444}Br$  hydrate at x = 0.0257 (e)  $N_{3444}Br$  hydrate at x = 0.0197 (f)  $N_{3444}Br$  hydrate at x = 0.0099 (likely ice).



(a) N<sub>3444</sub>Br hydrate



(b) N<sub>4445</sub>Br hydrate

Fig. S2 *T-x* curves for the present semiclathrate hydrates. The dotted lines show traces of the literature data<sup>37</sup> which are only provided as figures without reporting values.



Fig. S3 PXRD pattern for N<sub>4445</sub>Br hydrate at 93 K.



Fig. S4 Unit cell parameters of  $N_{3444}$ Br hydrate at temperatures between 93–273 K.



(a) N<sub>4445</sub>Br hydrate



(b) N<sub>3444</sub>Br hydrate



(c) Expansion ratio of unit-cell volume.



3. DSC data



(a)  $N_{3444}$ Br hydrate, *x* = 0.0370.



(b)  $N_{4445}$ Br hydrate, *x* = 0.0252.



(c) A typical measurement program.

Fig. S6 DSC curves for the present semiclathrate hydrates. Colours: red, data with quenched sample (without annealing); others, data with annealed sample.



Fig. S7 Specific heats of fusion for semiclathrates. Colours: Red, specific heat of fusion per mass of sample; Blue, specific heat of fusion per mole of salt; Blank, Specific heat of fusion per mass of salt. Symbols for salt:  $\Box$ , N<sub>3444</sub>Br;  $\diamond$ , N<sub>4445</sub>Br;  $\triangle$ , N<sub>4444</sub>Br;  $\star$ , P<sub>4444</sub>Br;  $\star$ , P<sub>4444</sub>Br;  $\star$ , N<sub>4444</sub>Br;  $\circ$ , N<sub>4444</sub>Cl. See Table S3 for reference data.

## Table S3. Reference data for DSC results.

| Salt                           | Reference | Fusion heat   |              |               |             | w            | T <sub>eq</sub> | Ref for $T_{eq}$ |                 |
|--------------------------------|-----------|---------------|--------------|---------------|-------------|--------------|-----------------|------------------|-----------------|
|                                |           | kJ/kg(sample) | kJ/mol(salt) | kJ/mol(water) | kJ/kg(salt) | kJ/kg(water) | in mass frac    | К                |                 |
| N <sub>3444</sub> Br           | This work | 162           | 121.1        | 4.8           | 408.7       | 269.1        | 0.40            | 273.8            | This work       |
| N <sub>4445</sub> Br           | This work | 223           | 230.0        | 6.0           | 683.7       | 330.7        | 0.33            | 280.9            | This work       |
| N <sub>4444</sub> Br<br>(TBAB) | 53        | 184.8         | 148.9        | 5.5           | 462.0       | 308.0        | 0.40            | 285.2            | 7 (At 40 mass%) |
|                                | 11        | 193           | 152.5        | 5.9           | 473.0       | 326.0        | 0.41            | 285.2            | 7 (At 40mass%)  |
|                                | 54        | 192.6         | 152.2        | 5.9           | 472.1       | 325.3        | 0.41            | 285.2            | 7 (At 40mass%)  |
|                                | 55        | 219.9         | 221.0        | 5.8           | 685.7       | 323.7        | 0.15*           | 281.2            | 7 (At 15mass%)  |
| N <sub>4444</sub> Cl<br>(TBAC) | 53        | 186.7         | 142.0        | 5.3           | 510.8       | 294.2        | 0.37            | 288.2            | 9               |
| P <sub>4444</sub> Br<br>(TBPB) | 8         | 214           | 207.5        | 5.9           | 611.4       | 329.2        | 0.35            | 282.4            | 8               |

\* The crystal sample subjected to DSC was grown in an aqueous solution with 0.15 of the

salt in mass fraction.



Fig. S8 Solid-state <sup>13</sup>C NMR data for the present semiclathrate hydrates of  $N_{3444}Br$  and  $N_{4445}Br$  and solution-state <sup>13</sup>C NMR data of these salts in CDCl<sub>3</sub>.