Supplemental Material for

'Predicted crystal structures of xenon and alkali metals under high pressures'

Yifan Tian, a John S. Tse, a,b Guangtao Liu *a and Hanyu Liua

^aState Key Laboratory of Superhard Materials and International Center for Computational

Method & Software, College of Physics, Jilin University, Changchun 130012, China

^bPhysics and Engineering Physics Department, University of Saskatchewan, S7N 5E2,

Canada

Figure S1. Thermodynamic stabilities of M_xXe_y compounds (M = Na, K and Rb) (a) M = Na, (b) M = K and (c) M = Rb. The solid circles indicate energetically stable phases against decompositions and open circles located above the convex hull indicate the unstable or metastable structures.

Figure S2. Calculated phonon spectra for various Na–Xe compounds at the respective stable pressure range. (a) NaXe(Pm-3m) at 30 GPa(b)NaXe₃(P4/mmm) at 150 GPa (c) NaXe₄(I4/mmm) at 150 GPa.

Figure S3. Calculated phonon spectra for various K-Xe compounds at the respective stable pressure range. (a)KXe (*Pm*-3*m*) at 20 GPa (b) K₃Xe (*C*2/*m*) at 50GPa (c) KXe₂ (*I*4/*mmm*) at 50GPa (d) K₃Xe₂(*I*4/*mmm*) at 100 GPa (e) KXe₃ (*P*4/*mmm*) at 150GPa (f) K₂Xe₃ (*I*4/*mmm*) at 50 GPa (g) KXe₄ (*C*2/*m*) at 50 GPa.

Figure S4. Calculated phonon spectra for various Rb–Xe compounds at the respective stable pressure range. (a)RbXe (*Pm-3m*) at 30 GPa(b) RbXe₂(*I*4/*mmm*) at 30GPa (c) RbXe₃(*P*4/*mmm*) at 100GPa (d) Rb₂Xe₃(*I*4/*mmm*) at 50 GPa (e) RbXe₄(*C*2/*m*) at 50GPa.

Figure S5. Stable structures of Na–Xe compounds. (a) NaXe (Pm-3m) (b) NaXe₃ (P4/mmm) (c) NaXe₄ (I4/mmm).

Figure S6. Stable structures of K–Xe compounds. (a) *Pm*-3*m*-KXe (b) *C*2/*m*-KXe₄ (c) *C*2/*m*-K₃Xe (d) *I*4/*mmm*-K₃Xe₂ (e) *I*4/*mmm*-K₂Xe₃ (f) *P*4/*mmm*-KXe₃ (g) *I*4/*mmm*-KXe₂.

Figure S7. Stable structures of Rb–Xe compounds. (a) *Pm-3m-*RbXe (b) *I4/mmm-*RbXe₂ (c) *P4/mmm-*RbXe₃ (d) *I4/mmm-*Rb₂Xe₃ (e) *C2/m-*RbXe₄.

Figure S8. The change of internal energy of compounds NaXe, KXe, RbXe and CsXe versus pressure.

Figure S9. Bond lengths of elements Na, K, Rb and Cs under increasing pressure.

Figure S10. The calculated projected densities of states (PDOS) of various Xe–K compounds at 100 GPa. The vertical dotted line indicates the Fermi energy.

Figure S11. Projected densities of states (PDOS) of different compounds (a) K_2Xe (b) K_2Xe_3 and (c) KXe_2 .

Figure S12. Electron location function (ELF) of the compound NaXe and RbXe (space group Pm-3m) in the (110) plane at 100 GPa.

Phases	P (GPa)	lattice parameters (Å,		atomic coordinates (fractional)			
		°)					
NaXe	50	a = b = c = 3.234	Na(1a)	0	0	0	
Pm-3m		$a=\beta=\gamma=90.0$	Xe(1b)	0.5	0.5	0.5	
NaXe ₃	150	a = b = 2.914	Na(1b)	0	0	0.5	
P4/mmm		c = 6.950	Xe(2h)	0.5	0.5	0.289	
		$a=\beta=\gamma=90.0$	Xe(1a)	0	0	0	
NaXe ₄	150	a = b = 2.912	Na(2b)	0.5	0.5	0	
I4/mmm		c = 17.963	Xe(4e)	0	0	0.306	
		$a=\beta=\gamma=90.0$	Xe(4e)	0.5	0.5	0.418	
KXe	50	a = b = c = 3.373	K(1a)	0	0	0	
Pm-3m		$a=\beta=\gamma=90.0$	Xe(1b)	0.5	0.5	0.5	
KXe ₂	50	a = b = 3.342	K(2b)	0	0	0.5	
I4/mmm		c = 11.062	Xe(4e)	0	0	0.847	
		$a=\beta=\gamma=90.0$					
K ₂ Xe ₃	50	a = b = 3.155	K(4e)	0	0	0.097	
I4/mmm		c = 16.513	Xe(4e)	0	0	0.310	
		$a=\beta=\gamma=90.0$	Xe(2b)	0.5	0.5	0	
K ₃ Xe	50	a = 10.237	K(4i)	0.165	0	0.560	
C2/m		b = 3.464	K(4i)	0.168	0	0.866	
		c = 8.029	K(2b)	0	0.5	0	
		$a = \gamma = 90$	K(2d)	0	0.5	0.5	
		$\beta = 79.306$	Xe(4i)	0.887	0	0.774	
KXe ₄	50	a = 11.270	K(4i)	0.25	0	0.25	
C2/m		b = 3.429	Xe(4i)	0.151	0	0.566	
		c = 11.263	Xe(4i)	0.933	0	0.150	
		$a = \gamma = 90$	Xe(4i)	0.933	0.5	0.651	
		$\beta = 89.971$	Xe(4i)	0.151	0.5	0.066	
K ₃ Xe ₂	100	a = b = 3.121	K(4e)	0	0	0.212	
I4/mmm		c = 15.400	K(2a)	0.5	0.5	0.5	
		$a=\beta=\gamma=90.0$	Xe(4e)	0.5	0.5	0.104	
RbXe	50	a = b = c = 3.460	Rb(1a)	0.5	0.5	0.5	
Pm-3m		$a = \beta = \gamma = 90.0$	Xe(1b)	0	0	0	

Table S1. Crystal Structure Information of Stable Na-Xe, K-Xe and Rb-Xe Compounds

RbXe ₂	50	a = b = 3.489	Rb(2b)	0.5	0.5	0
I4/mmm		c = 10.648	Xe(4e)	0	0	0.157
		$a=\beta=\gamma=90.0$				
Rb ₂ Xe ₃	50	a = b = 3.453	Rb(4e)	0	0	0.902
I4/mmm		c = 17.844	Xe(4e)	0	0	0.307
		$a=\beta=\gamma=90.0$	Xe(2b)	0	0	0.5
RbXe ₃	100	a = b = 3.347	Rb(1c)	0.5	0.5	0
P4/mmm		c = 6.486	Xe(1d)	0.5	0.5	0.5
		$a=\beta=\gamma=90.0$	Xe(2g)	0	0	0.763
RbXe ₄	50	a = 11.325	Rb(2a)	0	0	0
<i>C</i> 2/ <i>m</i>		b = 3.495	Xe(4i)	0.411	0	0.199
		c = 8.010	Xe(4i)	0.211	0	0.623
		$a=\gamma=90$				
		$\beta = 134.993$				