Supplemental Material for

'Predicted crystal structures of xenon and alkali metals under high pressures'

Yifan Tian, ${ }^{\text {a }}$ John S. Tse, ${ }^{\text {a,b }}$ Guangtao Liu *a and Hanyu Liu ${ }^{\text {a }}$
${ }^{\text {a }}$ State Key Laboratory of Superhard Materials and International Center for Computational
Method \& Software, College of Physics, Jilin University, Changchun 130012, China
${ }^{\text {b }}$ Physics and Engineering Physics Department, University of Saskatchewan, S7N 5E2,
Canada

Figure S 1 . Thermodynamic stabilities of $\mathrm{M}_{\mathrm{x}} \mathrm{Xe} \mathrm{e}_{\mathrm{y}}$ compounds ($\mathrm{M}=\mathrm{Na}, \mathrm{K}$ and Rb) (a) $M=N a$, (b) $M=K$ and (c) $M=R b$. The solid circles indicate energetically stable phases against decompositions and open circles located above the convex hull indicate the unstable or metastable structures.

Figure S 2 . Calculated phonon spectra for various $\mathrm{Na}-\mathrm{Xe}$ compounds at the respective stable pressure range. (a) $\mathrm{NaXe}(\mathrm{Pm}-3 \mathrm{~m})$ at $30 \mathrm{GPa}(\mathrm{b}) \mathrm{NaXe}_{3}(\mathrm{P} 4 / \mathrm{mmm})$ at 150 GPa (c) $\mathrm{NaXe}_{4}(\mathrm{I} 4 / \mathrm{mmm})$ at 150 GPa .

Figure S3. Calculated phonon spectra for various K-Xe compounds at the respective stable pressure range. (a)KXe $(P m-3 m)$ at $20 \mathrm{GPa}(\mathrm{b}) \mathrm{K}_{3} \mathrm{Xe}(C 2 / m)$ at 50 GPa (c) $\mathrm{KXe}_{2}(I 4 / \mathrm{mmm})$ at $50 \mathrm{GPa}(\mathrm{d}) \mathrm{K}_{3} \mathrm{Xe}_{2}(\mathrm{I} 4 / \mathrm{mmm})$ at $100 \mathrm{GPa}(\mathrm{e}) \mathrm{KXe}_{3}(P 4 / \mathrm{mmm})$ at 150 GPa (f) $\mathrm{K}_{2} \mathrm{Xe}_{3}(I 4 / \mathrm{mmm})$ at 50 $\mathrm{GPa}(\mathrm{g}) \mathrm{KXe}_{4}(C 2 / m)$ at 50 GPa .

Figure S4. Calculated phonon spectra for various $\mathrm{Rb}-\mathrm{Xe}$ compounds at the respective stable pressure range. (a) $\mathrm{RbXe}(P m-3 m)$ at $30 \mathrm{GPa}(\mathrm{b}) \mathrm{RbXe}_{2}(I 4 / \mathrm{mmm})$ at 30 GPa (c) $\mathrm{RbXe}_{3}(P 4 / \mathrm{mmm})$ at $100 \mathrm{GPa}(\mathrm{d}) \mathrm{Rb}_{2} \mathrm{Xe}_{3}(I 4 / \mathrm{mmm})$ at $50 \mathrm{GPa}(\mathrm{e}) \mathrm{RbXe}_{4}(C 2 / m)$ at 50 GPa .

C.

Figure S5. Stable structures of $\mathrm{Na}-\mathrm{Xe}$ compounds. (a) $\mathrm{NaXe}(P m-3 m)$ (b) $\mathrm{NaXe}_{3}(P 4 / \mathrm{mmm})$ (c) $\mathrm{NaXe}_{4}(\mathrm{I} 4 / \mathrm{mmm})$.
a.

b.

d.

e.

g.

Figure S6. Stable structures of $\mathrm{K}-\mathrm{Xe}$ compounds. (a) $P m-3 m-\mathrm{KXe}$ (b) $C 2 / m-\mathrm{KXe}_{4}$ (c) $C 2 / m-\mathrm{K}_{3} \mathrm{Xe}$
(d) $I 4 / m m m-\mathrm{K}_{3} \mathrm{Xe}_{2}$ (e) $I 4 / m m m-\mathrm{K}_{2} \mathrm{Xe}_{3}$ (f) $P 4 / m m m-\mathrm{KXe}_{3}$ (g) $I 4 / m m m-\mathrm{KXe}_{2}$.

Figure S7. Stable structures of $\mathrm{Rb}-\mathrm{Xe}$ compounds. (a) $P m-3 m-\mathrm{RbXe}$ (b) $I 4 / m m m-\mathrm{RbXe}_{2}$ (c) $P 4 / m m m-\mathrm{RbXe}_{3}$ (d) $I 4 / m m m-\mathrm{Rb}_{2} \mathrm{Xe}_{3}$ (e) $C 2 / m-\mathrm{RbXe}_{4}$.

Figure S 8 . The change of internal energy of compounds $\mathrm{NaXe}, \mathrm{KXe}, \mathrm{RbXe}$ and CsXe versus pressure.

Figure S 9 . Bond lengths of elements $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}$ and Cs under increasing pressure.

Figure S10. The calculated projected densities of states (PDOS) of various Xe-K compounds at 100 GPa . The vertical dotted line indicates the Fermi energy.

Figure S11. Projected densities of states (PDOS) of different compounds (a) $\mathrm{K}_{2} \mathrm{Xe}$ (b) $\mathrm{K}_{2} \mathrm{Xe}_{3}$ and (c) KXe_{2}.

Figure S12. Electron location function (ELF) of the compound NaXe and RbXe (space group Pm$3 m$) in the (110) plane at 100 GPa .

Table S1. Crystal Structure Information of Stable $\mathrm{Na}-\mathrm{Xe}, \mathrm{K}-\mathrm{Xe}$ and $\mathrm{Rb}-\mathrm{Xe}$ Compounds

Phases	P	lattice parameters (\AA,	atomic coordinates (fractional)			
NaXe	50	$\mathrm{a}=\mathrm{b}=\mathrm{c}=3.234$	$\mathrm{Na}(1 \mathrm{a})$	0	0	0
Pm-3m		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(1 \mathrm{~b})$	0.5	0.5	0.5
NaXe_{3}	150	$\mathrm{a}=\mathrm{b}=2.914$	Na (1b)	0	0	0.5
P4/mmm		$\mathrm{c}=6.950$	Xe (2h)	0.5	0.5	0.289
		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(1 \mathrm{a})$	0	0	0
NaXe_{4}	150	$\mathrm{a}=\mathrm{b}=2.912$	Na (2b)	0.5	0.5	0
I4/mmm		$\mathrm{c}=17.963$	$\mathrm{Xe}(4 \mathrm{e})$	0	0	0.306
		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(4 \mathrm{e})$	0.5	0.5	0.418
KXe	50	$\mathrm{a}=\mathrm{b}=\mathrm{c}=3.373$	K(1a)	0	0	0
Pm-3m		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(1 \mathrm{~b})$	0.5	0.5	0.5
KXe_{2}	50	$\mathrm{a}=\mathrm{b}=3.342$	K(2b)	0	0	0.5
I4/mmm		$\mathrm{c}=11.062$	$\mathrm{Xe}(4 \mathrm{e})$	0	0	0.847
		$\mathrm{a}=\beta=\gamma=90.0$				
$\mathrm{K}_{2} \mathrm{Xe}_{3}$	50	$\mathrm{a}=\mathrm{b}=3.155$	K(4e)	0	0	0.097
14/mmm		$\mathrm{c}=16.513$	$\mathrm{Xe}(4 \mathrm{e})$	0	0	0.310
		$\mathrm{a}=\beta=\gamma=90.0$	Xe(2b)	0.5	0.5	0
$\mathrm{K}_{3} \mathrm{Xe}$	50	$\mathrm{a}=10.237$	K(4i)	0.165	0	0.560
C2/m		$\mathrm{b}=3.464$	K(4i)	0.168	0	0.866
		$\mathrm{c}=8.029$	K(2b)	0	0.5	0
		$\mathrm{a}=\gamma=90$	K(2d)	0	0.5	0.5
		$\beta=79.306$	Xe(4i)	0.887	0	0.774
KXe ${ }_{4}$	50	$\mathrm{a}=11.270$	K(4i)	0.25	0	0.25
C2/m		$\mathrm{b}=3.429$	Xe(4i)	0.151	0	0.566
		$\mathrm{c}=11.263$	Xe(4i)	0.933	0	0.150
		$\mathrm{a}=\gamma=90$	Xe(4i)	0.933	0.5	0.651
		$\beta=89.971$	$\mathrm{Xe}(4 \mathrm{i})$	0.151	0.5	0.066
$\mathrm{K}_{3} \mathrm{Xe}_{2}$	100	$\mathrm{a}=\mathrm{b}=3.121$	K(4e)	0	0	0.212
I4/mmm		$\mathrm{c}=15.400$	K(2a)	0.5	0.5	0.5
		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(4 \mathrm{e})$	0.5	0.5	0.104
RbXe	50	$\mathrm{a}=\mathrm{b}=\mathrm{c}=3.460$	Rb (1a)	0.5	0.5	0.5
Pm-3m		$\mathrm{a}=\beta=\gamma=90.0$	Xe(1b)	0	0	0

RbXe_{2}	50	$\mathrm{a}=\mathrm{b}=3.489$	Rb (2b)	0.5	0.5	0
14/mmm		$\mathrm{c}=10.648$	$\mathrm{Xe}(4 \mathrm{e})$	0	0	0.157
		$\mathrm{a}=\beta=\gamma=90.0$				
$\mathbf{R b}_{2} \mathbf{X e}_{3}$	50	$\mathrm{a}=\mathrm{b}=3.453$	$\mathrm{Rb}(4 \mathrm{e})$	0	0	0.902
I4/mmm		$\mathrm{c}=17.844$	$\mathrm{Xe}(4 \mathrm{e})$	0	0	0.307
		$\mathrm{a}=\beta=\gamma=90.0$	Xe (2b)	0	0	0.5
RbXe_{3}	100	$\mathrm{a}=\mathrm{b}=3.347$	Rb (1c)	0.5	0.5	0
P4/mmm		$\mathrm{c}=6.486$	$\mathrm{Xe}(1 \mathrm{~d})$	0.5	0.5	0.5
		$\mathrm{a}=\beta=\gamma=90.0$	$\mathrm{Xe}(2 \mathrm{~g})$	0	0	0.763
RbXe_{4}	50	$\mathrm{a}=11.325$	$\mathrm{Rb}(2 \mathrm{a})$	0	0	0
C2/m		$\mathrm{b}=3.495$	Xe(4i)	0.411	0	0.199
		$\mathrm{c}=8.010$	Xe(4i)	0.211	0	0.623
		$\mathrm{a}=\gamma=90$				
		$\beta=134.993$				

