Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

Effect of Monovalent Salt on the Energetics of Antimicrobial-Peptide: Micelle Dissociation

Suvankar Ghosh,¹ Sunanda Chatterjee,^{2*} Priyadarshi Satpati^{1*}

¹Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

> ²Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

* Correspondence and requests for materials should be addressed to P.S. (Tel: +91-361-2583205, Fax: +91-361-2582249, e-mail: psatpati@iitg.ac.in) and S.C. (Tel: +91-361-2583310, mail: sunanda.c@iitg.ac.in)

Content

SI No.		Торіс	Page No.
1	Table S1	Simulation details for umbrella sampling	S3
2	Table S2	Sampling and Convergence Simulation of LL-14:SDS system.	S4
3	Table S3	Details of Simulation trial of LL-14:DPC complex.	S5
4	Fig. S1	Force profile of LL-14:SDS complex at various pulling rates.	S6
5	Fig. S2	Distance between the center-of-mass (COM) of the peptide and the SDS micelle as a function of time.	S7
6	Fig. S3	Umbrella histogram at different salt concentration.	S 7
7	Fig. S4	Ramachandran Plot of LL-14 peptide.	S 8
8	Fig. S5	Force profile and Potential of mean force (PMF) of LL- 14:DPC complex.	S9

	LL-14:SDS	LL-14:SDS	LL-14:SDS	
	(NaCl = 0.0% w/v)	(NaCl = 0.5% w/v)	(NaCl = 1.0% w/v)	
Total no of atoms	268833	268038	266918	
No of Water molecules	88649	88292	87925	
Na ⁺ ions	60	198 338		
Cl ⁻ ions	7	145	285	
	Molecular Dynan	nics parameters		
time step		0.002 ps		
boundary condition		Periodic boundary condition (pbc)		
Long range electrostatics		Particle Mesh Ewald (PME ¹)		
Short-range neighbour list	cut-off	1.4 nm		
Short-range electrostatic cu	ut-off	1.4 nm		
Short-range van der Waals	cut-off	1.4 nm		
Constraint algorithm (h-bo	nds)	lincs ²		
Temperature control		velocity rescaling algorithm (V-rescale ³)		
Pressure control		Parrinello-Rahman ⁴		

Table S1: Simulation setup details for umbrella sampling

References

- 1 T. Darden, D. York and L. Pedersen, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, *J Chem Phys*, 1993, **98**, 10089–10092.
- 2 B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, LINCS: A linear constraint solver for molecular simulations, *J Comput Chem*, , DOI:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H.
- G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling, *J Chem Phys*, 2007, **126**, 014101.
- 4 M. Parrinello and A. Rahman, Strain fluctuations and elastic constants, *J Chem Phys*, 1982, **76**, 2662–2666.

Table S2: No restraint applied for SDS micelle during umbrella Sampling. Run-length (in ns) and estimated binding free energy from each independent replica are given. $\Delta G^{Averaged}$ is the average over multiple replicas. $\Delta\Delta G^{Averaged} = \Delta G^{Averaged}(0.5\% \text{ or } 1\% \text{ NaCl}) - \Delta G^{Averaged}(0\% \text{ NaCl})$. Total Simulation length =(33745 ns *umbrella sampling* + 120.6 ns *equilibration* + 8 ns *SMD*) = 33873.6 ns ~33.87 µs. Error is in SEM given after ±.

	Replicas	Run-length of Umbrella Sampling	ΔG (kcal/mol)	$\Delta G^{Averaged}$ (kcal/mol)	$\Delta\Delta G^{Averaged}$ (kcal/mol)
	Trial 1	43 windows \times 50 ns = 2150 ns	-33.85 ± 0.97		
LL-14:SDS (NaCl = 0.0%)	Trial 2	43 windows \times 55 ns = 2365 ns	-34.15 ± 1.16	-33.53 ± 0.86	0.0
	Trial 3 (Highest Sampling)	43 windows × 250 ns = 10750 ns	-33.19 ± 0.75		
LL-14:SDS (NaCl = 0.5%)	Trial 1	43 windows \times 50 ns = 2150 ns	-25.58 ± 0.86	25.61 ± 0.03	-7.92
	Trial 2	43 windows \times 55 ns = 2365 ns	-25.79 ± 1.12	-25.01 ± 0.95	
LL-14:SDS (NaCl = 1.0%)	Trial 1	43 windows \times 50 ns = 2150 ns	-21.54 ± 0.98	21.58 ± 1.02	11.05
	Trial 2	43 windows \times 55 ns = 2365 ns	-21.80 ± 1.16	-21.38 ± 1.02	-11.93

Alternate Approach* In each window, " d_{COM} " and SDS micelle were harmonically restrained, employing a force constant of 1000 kJ mol⁻¹ nm⁻² relative to the starting coordinate. Snapshots selected from fast pulling simulations, pulling rate = 0.01 nm ps⁻¹). In trial 4, umbrella sampling was performed by choosing the snapshots from a slow pull (pulling rate = 0.005 nm ps⁻¹) simulation. The SDS micelle was modelled as an immobile reference (restrained) during the umbrella sampling simulations.

Alternate Approach*	Replicas	Run-length of Umbrella Sampling	ΔG (kcal/mol)	$\Delta G^{Averaged}$ (kcal/mol)	$\Delta\Delta G^{Averaged}$ (kcal/mol)	
LL-14:SDS (NaCl =	Trial 1	$43 \text{ windows} \times 10 \text{ ns}$ $= 430 \text{ ns}$	-61.95 ± 0.95		0.0	
0.0%)	Trial 2	43 windows \times 50 ns = 2150 ns	-60.09 ± 0.88			
	Trial 3	43 windows \times 10 ns = 430 ns	-61.03 ± 0.97	-61.09 ± 0.85		
	Trial 4 (Slow Pull SMD)	$44 \text{ windows} \times 10 \text{ ns}$ $= 440 \text{ ns}$	-61.29 ± 0.93			
LL-14:SDS (NaCl =	Trial 1	$43 \text{ windows} \times 10 \text{ ns}$ $= 430 \text{ ns}$	-46.14 ± 0.52	$\frac{2}{4}$ -46.04 ± 0.45	15.04	
0.5%)	Trial 2	43 windows \times 50 ns = 2150 ns	-45.94 ± 0.44		-13.04	

LL-14:SDS (NaCl = 1.0%)	Trial 1	43 windows \times 10 ns = 430 ns	-42.58 ± 0.49	$\frac{.49}{.31} -42.34 \pm 0.32$	-18.77
	Trial 2	43 windows \times 50 ns = 2150 ns	-42.09 ± 0.31		

The absolute value of estimated free energies (ΔG) was strongly dependent on the adopted approach (Restrained or unrestrained SDS micelle). However, the salt-induced systematic change in the binding affinity, disfavouring LL-14 binding to SDS micelle, was a robust feature independent of the adopted approach.

Table S3: LL-14:DPC micelle binding free energy estimated from umbrella sampling (Approach 2: No restraint on the DPC micelle, Snapshot selected from COM pull rate = 0.01 nm/ps). SEM given after \pm .

Approach 2	Replicas	Run-length of Umbrella Sampling	ΔG (kcal/mol)
LL-14:DPC (NaCl = 0.0%)	Trial 1	$42 \text{ windows} \times 20 \text{ ns} = 840 \text{ ns}$	-11.58 ± 0.98

Fig. S1 Force versus time plots from various SMD simulations (pull rates = 0.01nm/ps, 0.005 nm/ps, and 0.001 nm/ps). The shape of the force profile was independent of the pull rates. Structures from various time-points shown in the boxes (**red** : 0.005 nm/ps pull-rate, **green** : 0.001 nm/ps pull-rate).

Fig. S2 Center-of-mass pulling simulation (d_{COM} vs. time plot, pulling rate = 0.01 nm/ps). d_{COM} = Distance between the center-of-mass of the LL-14 and SDS micelle. " d_{COM} " range (Minimum = 1.14 nm, Maximum = 6.31nm).

Fig. S3 Probability distribution at each umbrella sampling window (Total windows = 43, shown in different colours) from the LL-14:SDS PMF profile at various salt-concentrations (NaCl = 0%, 0.5%, and 1.0% w/v). The overlap of probability distribution (between two neighbouring windows) was evident.

Fig. S4 Ramachandran Plot of LL-14 peptide obtained from different trajectory segment during the centre-of-mass pulling (SMD, pull rate= 0.01 nm/ps, NaCl = 0% w/v). SMD trajectory segment (a) 0 - 263 ps, (b) 264 - 351 ps, and (c) 352 - 500 ps. ϕ and Ψ angles were plotted from -180° to 180°. Dispersion of red points from "a" \rightarrow "c" indicates helical \rightarrow random-coil transition. Blue regions exhibit either zero or little likelihood of the peptide adopting such a conformation.

Fig. S5 (a) Force vs. time plots of LL-14:DPC micelle complex (pull rate 0.01nm/ps, NaCl = 0% w/v). Structures at different time-points (grey, red, blue, and green) were overlaid (shown in surface-cartoon representations). (b) LL-14:DPC binding free energy (ΔG) estimated from the potential of mean force (PMF) versus reaction coordinate " ξ " plot. Simulation details were given in Table S3.