Electronic Supplementary Information

Characterization of charge transfer luminescence for $[WO_6]^{6-}$ octahedron in Ca₃WO₆ and $[WO_5]^{4-}$ square pyramid in Ca₃WO₅Cl₂

Yuuki Kitagawa,^{a*} Shota Takemura,^b Daigorou Hirai,^c Zenji Hiroi,^c Jumpei Ueda,^a Setsuhisa Tanabe^a

^{*a*} Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.

^b Luminescent Materials Group, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan.

^c Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Email

Y. Kitagawa: kitagawa.yuuki@aist.go.jp

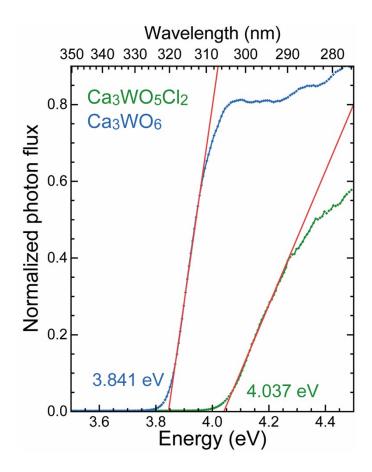
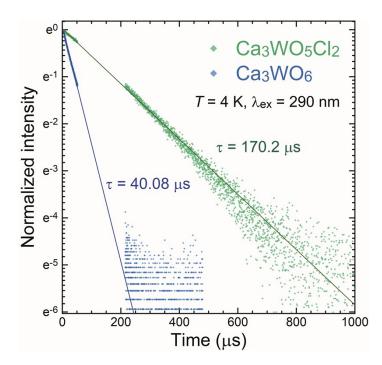
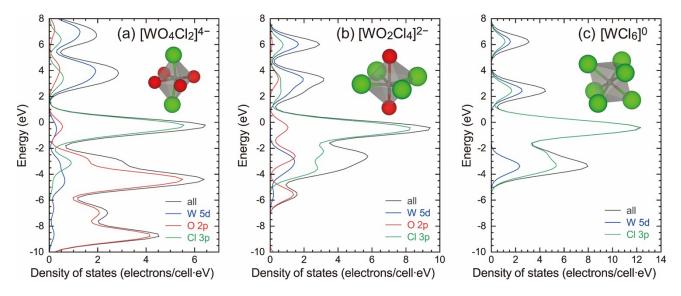




Fig. S1 Linear fitting for the absorption edge of the PLE spectra at 4 K.

Fig. S2 Luminescence decay curves of the single-crystal samples, measured at 4 K. Data in the range of 50–200 ns is missing due to a problem with the measurement setup.

Fig. S3 Total and partial density of electronic states for (a) a $[WO_4Cl_2]^{4-}$ cluster in WO_2Cl_2 (ICSD 28510), (b) a $[WO_2Cl_4]^{2-}$ cluster in $WOCl_4$ (ICSD 25519), and (c) a $[WCl_6]$ cluster in WCl_6 (ICSD 425147), which were calculated by the relativistic DV-X α method. The HOMO mainly composed of Cl 3p orbitals is set at 0 eV.

		Ca ₃ WO ₅ Cl ₂ (<i>Pbnm</i>)		$Ca_3WO_6(P2_1/n)$		
		CIF	Optimized	CIF	Optimized	
lattice constants		a = 11.820(2) Å b = 11.132(1) Å c = 5.587(1) Å	a = 11.8007 Å b = 11.0789 Å c = 5.5574 Å	a = 5.5518(3) Å b = 5.8100(3) Å c = 8.0066(4) Å $\beta = 89.808(1)^{\circ}$	a = 5.5065 Å b = 5.7905 Å c = 7.9640 Å $\beta = 90.1846^{\circ}$	
bonding ^a	$W^{6+}-O^{2-}_{I}$ $W^{6+}-O^{2-}_{II}$ $W^{6+}-O^{2-}_{III}$	1.724(15) Å 1.887(11) Å 1.911(11) Å	1.73113 Å 1.88707 Å 1.90258 Å	1.9273(7) Å 1.9134(6) Å 1.9358(8) Å	1.93016 Å 1.90982 Å 1.92416 Å	
	W^{6+} - Cl^-	3.404(8) Å	3.26617 Å			

Table S1 Lattice constants and interatomic distances between W⁶⁺ and ligands before and after DFT geometry optimization

^{*a*}The different O²⁻ ions are labeled with Roman numerals, I–III, shown in Fig. 1.

	top1 ^b	top2 ^b	top4 ^b	5d ₁	5d ₂	5d ₃	5d ₄	5d ₅
W 5d	0.04	0.03	0.01	80.00	68.67	71.08	49.95	70.68
O 2p	11.14	17.59	14.10	19.88	29.07	26.63	23.53	25.95
Cl 3p	88.57	82.21	85.19	0.00	0.04	0.02	1.22	0.00

Table S2 Results of compositional analysis of MO levels calculated by the relativistic DV-X α calculation (unit: %)^{*a*}

^{*a*}Note that the total percentages are less than 100% because of small contributions of other orbitals, such as O 2s, W 6s, and W 6p orbitals.

^{*b*}The first, second, and fourth levels of the HOMO level are labeled top1, top2, and top4, respectively, in order of decreasing energy, mainly composed of the Cl $3p_x$, $3p_y$, and $3p_z$ orbitals.

Confirmation of k-points convergence

In order to confirm the validity of these k-points grids, the DFT single-point SCF calculations with the double k-points grids ($2\times2\times4$ for Ca₃WO₅Cl₂ and $6\times6\times4$ for Ca₃WO₆) were performed with the CASTEP module. The results are summarized in Table S3. Because the total energies are well converged even with smaller k-points mesh, the smaller k-points grids ($1\times1\times3$ for Ca₃WO₅Cl₂ and $3\times3\times2$ for Ca₃WO₆) are enough for the property calculations.

Table S3. Comparison of the SCF converged energy with different sizes of k-point grids

	Ca ₃ W	O ₅ Cl ₂	Ca ₃ WO ₆	
	1×1×3	2×2×6	3×3×2	6×6×4
SCF converged energy (eV)	-33652.0430	-33652.0192	-15917.9952	-15917.9203