Structuring Effect of the Alkyl Domains on the Polar Network of Ionic Liquids Mixtures: a Molecular Dynamics Study

Valerio Mazzilli,^{a,b} Yanting Wang^{c,d} and Giacomo Saielli*^{a,b}

Supporting Information

Figure S1, RDF involving the terminal methyl carbon	р. 2
Table S1, peak maxima in RDF	р. З
Figure S2, RDF o the distance between the anion and the cation's ring	р. 4
Table S2, Diffusion coefficient ratios	р. 5

Figure S1. A) RDF of the C_{12} '-N distance between $[C_{12}C_{1}im]$ alkyl chain and anions; b) RDF of the C_{12} '- C_{2} distance between $[C_{12}C_{1}im]$ alkyl chain and imidazolium heads (irrespective of being $[C_{12}C_{1}im]$ or $[C_{1}C_{1}im]$); c) RDF of the C_{12} '- C_{12} ' distance between two alkyl chains. (see Figure 1 of the main text for atom numbering).

X C12	Peak position (Å)
1.0	6.95 ± 0.05
0.9	6.95 ± 0.05
0.8	7.05 ± 0.05
0.7	7.05 ± 0.05
0.6	7.05 ± 0.05
0.5	7.05 ± 0.05
0.4	7.15 ± 0.05
0.3	7.15 ± 0.05
0.2	7.15 ± 0.05
0.1	7.25 ± 0.05
0.0	7.25 ± 0.05

Table S1. Peak position of the RDF in Figure 3a) of the main text. The RDF x-axis resolution(that is the discretization of the distance) is 0.1 Å.

Figure S2. RDF of the distance between the anion's nitrogen and the three carbons of the cationic ring. (Top) N-C2; (middle) N-C4; (bottom) N-C5, see scheme on the right for atom numbering.

Table S2. Diffusion coefficient ratios. $C12 = [C_{12}C_1im]$ cation; $C1 = [C_1C_1im]$ cation; $Tf_2N =$ anion.

	D(C12)/D(C1)	D(C12)/D(Tf ₂ N)	$D(C1)/D(Tf_2N)$
1.0		0.77	
0.9	0.56	0.71	0.79
0.8	0.54	0.75	0.71
0.7	0.62	0.77	0.80
0.6	0.55	0.69	0.82
0.5	0.50	0.64	0.78
0.4	0.53	0.75	0.71
0.3	0.53	0.76	0.69
0.2	0.52	0.74	0.70
0.1	0.51	0.78	0.65
0.0			0.64