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Supplementary note 1 
EDL effects on the E-field magnitude and distribution 
Generally, EDL is a structure formed at the electrolyte-electrode interface due to the simultaneous 
aggregation or depletion of electrons within the electrode and counter-ionic species in the vicinity of the 
electrode surface under an externally applied potential. Here, we introduce the structure of the EDL 
described by commonly used Gouy-Chapman-Stern (GCS) model,1 which has the predicted properties of 
the EDL similar to that observed experimentally.  For a negatively charged electrode, the electrons on the 
electrode surface attract the solvated cations in the electrolyte moving towards the electrode to neutralize 
the electrons and maintain the electroneutrality. In the GCS model, a layer of solvated cations adhered to 
the electrode surface is referred to as Stern layer. Due to a comparatively larger size of the solvated cation 
compared to the electron size, the cations in the Stern layer are not able to fully neutralize the electrons 
on the electrode surface. As a result, more cations are continually attracted to the vicinity of the Stern layer 
via the Coulomb force. These cations are loosely attracted by the electrode and are not in direct contact 
with it, comprising a so-called diffuse layer. Typically, the identity and the concentration of the cations in 
the electrolyte determine the structure of the EDL. For instance, the thickness of Stern layer varies from 0.3 
nm to 1 nm, depending on the type of the solvated cation. Furthermore, the extension of the diffuse layer 
into the electrolyte solution depends on the shielding ability of the cation against the electrode potential. 
The latter is determined by the ionic strength of the cation, which is a function of the valence charge and 
concentration of the cation. The width of the diffuse layer can be evaluated theoretically using the Debye 
length theory,2 or experimentally by the ambient pressure X-ray photoelectron spectroscopy3. Considering 
the electrolytes with the concentrations of 0.1 M to 5M are commonly used in CO2RR electrolysis4 to have 
a good ion conductivity, the diffuse layer can only extend into the electrolyte solution by 1 nm to 2 nm, 
suggesting the potential in the electrolyte drops to zero beyond this range. Due to the fast drop of the 
electrode potential within a very short distance, high E-field are generated at the electrode-electrolyte 
interface. Waegele and co-works performed the vibrational Stark spectroscopy to investigate the interfacial 
E-field and found that it is roughly in the range of 108 V/m to 109 V/m (0.01 V/Å to 0.1 V/Å) at applied 
potentials of -1.0 V to 0 V vs Ag/AgCl.5    
 
Supplementary note 2 
Details of the electrochemical simulation domain and the nanostar electrode 
Briefly, the electrolytic cell is a 5000 nm × 5000 nm square with a 50 nm-thick substrate placed at the 
bottom as shown in Figure S5. A nanotar electrode is placed at the middle of the substrate. The shape 
of the nano-star electrode is generated from the function: R#$%&(𝑟, 𝜃; 𝑅-, 𝑟-) = 𝑟- + (𝑅- −
𝑟-) cos5

67
5

 , with two parameters, R- and r-, being 100 nm and 50 nm, respectively. 
The distance of the star center above the substrate surface is 83.66 nm, which is slightly smaller than 
the geometric height of the star center. As a result, the contacts of the nano-star with the substrate 
surface are two segments of ca. 3.6 nm rather than two points. The Stern layer is a uniform layer that 
is 0.33 nm above the electrode surface, as is indicated by the blue border in Figure S5b. The material 
for the nano-electrode and substrate is chosen gold. The electrolyte is 0.5M KHCO= aqueous solution 
saturated with CO5 (38 mM). The temperature of the system is 293.15 K and the electrolyte is unstirred. 

Supplementary note 3 
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Derivation of PB, PNP, MPB and GMPNP models  
Derivation of the Poisson-Boltzmann (PB) equation 
In the Poisson-Boltzmann model, the distribution of ionic species, 𝜌(𝒓), at equilibrium 
follows the Boltzmann distribution: 

𝜌(𝒓) =@𝜌A(𝒓)
A

=@𝑧A𝐹𝐶A∗𝑒
GHIJKL

(𝒓)
MN O

A

 (S1) 

Here 𝑧A  and 𝐶A∗ are the charge and the bulk concentration of the 𝑖QR ion species, 𝜙(𝑟) is the 
electric potential within the electrolyte, 𝑇 is the temperature of the system, 𝐹 is the Faraday 
constant, and 𝑅 is the ideal gas constant. Note that 𝑧A  is positive for cations and negative for 
anions. The second ingredient of the model is the Poisson’s equation: 

∇ ∙ W𝜀-𝜀Y∇𝜙(𝒓)Z = −𝜌(𝒓) (S2) 
In eqn S2, 𝜀- and 𝜀Y  are the vacuum permittivity and the relative permittivity of the media 
(in aqueous solutions, 𝜀Y  is the relative permittivity for water). Substitute eqn S1 into eqn 
S2, one obtains the Poisson-Boltzmann (PB) equation: 

∇ ∙ W𝜀-𝜀Y∇𝜙(𝒓)Z = −@𝑧A𝐹𝐶A∗𝑒
G[IJKMNL(𝒓)\

A

 (S3a) 

For symmetrical binary electrolyte (𝑧] = −𝑧G = 𝑧, 𝐶^_QA`a∗ = 𝐶_aA`a∗ = 𝐶∗), the PB equation 
can be further simplified to a hyperbolic form: 

∇ ∙ W𝜀-𝜀Y∇𝜙(𝒓)Z = 2𝑧𝐹𝐶∗ sinh [
𝑧𝐹
𝑅𝑇𝜙

(𝒓)\ (S3b) 

 
Derivation of the Poisson-Nernst-Planck (PNP) equation (without magnetic force) 
The principle of the PNP model is mass conservation. For any point in electrolyte within a time 
period, the concentration change of a species equals the difference between the species flow 
inside the point and that flow outside. In the context of electrolysis, only the diffusion and 
the electric migration are usually considered, resulting in the following differential equation: 

𝜕𝐶A(𝒓)
𝜕𝑡 = −∇ ∙ 𝑱𝒊(𝑟) = −∇ ∙ j−𝐷A𝛻𝐶A(𝒓) −

𝐷A𝑧A𝐹𝐶A(𝒓)
𝑅𝑇 𝛻𝜙(𝒓)m (S4) 

In eqn S4, 𝐽A, 𝐶A, and 𝐷A are the flux, the concentration, and the diffusion coefficient of the 
𝑖QR	species, while the definition of other variables follows those in the derivation of PB 
equation. In this work, we are interested in an equilibrium state, in which the concentration 
of ionic species does not change with respect to time. This gives the PNP equation: 

𝜕𝐶A(𝒓)
𝜕𝑡 = ∇ ∙ j𝐷A𝛻𝐶A(𝒓) +

𝐷A𝑧A𝐹𝐶A(𝒓)
𝑅𝑇 ∇ϕ(𝐫)m = 0 (S4a) 

 
The Lattice Gas Approximation6,7 
In both the PB and the PNP model, the ions are treated as point charge and thus can aggregate 
to form unphysically high ion concentration at high electrode voltage. To correct this, the size 
of the ions is introduced to the PB and the PNP model via the lattice gas approximation. In 
this approximation, the electrolyte is divided into small cubic cells of size 𝑎 . Each cell is 
assumed to have only three possible contents: a cation, an anion, or solvent. To better 
validate this assumption, the parameter 𝑎 is chosen close to the diameter of the ionic species. 
Given the logic of the lattice gas approximation, it is worth noting that despite the parameter 
𝑎 being usually referred to as the ‘diameter of the ionic species’, it is actually associated with 
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the fineness of the three-state cell, and is chosen according to the size of the ions. In 
additionally, methods derived using the lattice gas approximation only applies to the 
electrolyte systems whose cations and anions are of similar size.  
Using the lattice gas approximation, the internal energy, 𝑈 , and the entropy, 𝑆 , of an 
electrolyte system can be written as follows: 

𝑈 = v𝑑𝒓x−
𝜀
2
|∇𝜓|5 + 𝑧]𝑒𝐶]𝜓 + 𝑧G𝑒𝐶G𝜓 − 𝜇]𝐶] − 𝜇G𝐶G| (S5) 

In eqn S5, the definition of 𝑧, 𝐶, and 𝜓 follows those in the previous derivation. The chemical 
potential is denoted in 𝜇. 𝑒 is the elementary charge. The 𝜀 parameter is the product of 𝜀- 
and 𝜀Y  for a given medium. The ‘+’ and the ‘-‘ subscript denotes the property of cationic and 
anionic species, respectively. 
The first term in eqn S5 is the electric self-energy, while the following two terms arise from 
charge separation of ionic species under external electric potential. The last two are the 
chemical potential of ionic species. 
The entropy of the system can be obtained from the Gibbs entropy: 

−𝑆 = 𝑘~ @ 𝑝A ln(𝑝A)
A�(],G,�)

 (S6) 

In eqn S6, 𝑘~ is the Boltzmann’s constant, and 𝑝A  is the probability of the system in the ith 
state. According to the lattice gas approximation, a cell has three states. The probability of 
the cell being occupied by a cation, an anion, and water is denoted 𝑝], 𝑝G, and 𝑝�. Obviously, 
𝑝]  and 𝑝G  can be calculated from the concentration of the ionic species, and 𝑝�  can be 
calculated from the fact that the three probabilities sum up to unity. 

𝑝] = 𝐶]𝑎=	
	𝑝G = 𝐶G𝑎=	
	𝑝� = 1 − 𝑝] − 𝑝G 

(S7a) 
(S7b) 
(S7c) 

The Gibbs entropy of the electrolyte system is: 

𝑆 = −𝑘~@(𝑝] ln 𝑝] + 𝑝G ln 𝑝G + 𝑝� ln 𝑝�)
^���

	

= −
𝑘~
𝑎=
v𝑑𝒓 [𝐶]𝑎= ln(𝐶]𝑎=) + 𝐶G𝑎= ln(𝐶G𝑎=)

+ (1 − 𝐶]𝑎= − 𝐶G𝑎=) ln(1 − 𝐶]𝑎= − 𝐶G𝑎=)] 

(S8) 

 
The Helmholtz free energy of the system is 

𝐹 = 𝑈 − 𝑇𝑆 (S9) 
 
For an equilibrium state, 𝐹 should be minimized with respect to the change of the electric 
potential and the ion concentrations, thus 

𝜕𝐹
𝜕𝜓 = 0,

𝜕𝐹
𝜕𝐶]

= 0,
𝜕𝐹
𝜕𝐶G

= 0 (S10) 

 
The lattice gas approximation consists two assumptions: one is that each cube only has three 
possible contents: a cation, an anion, or pure water; the other is that the content of different 
cubes is independent of each other. To simultaneously validate the two assumptions to the 
maximum extent, the value of a is usually taken the diameter of the ionic species, and thus 
the parameter 𝑎 is usually referred to as the effective solvent diameter. The probability of a 
cube holding a cation or an anion depends on the local concentration of the ionic species and 
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the probability of water is calculated using the sum of the three probabilities being unity (eqn 
S7a-c). 
It should be emphasized that although the parameter 𝑎  is named the effective solvent 
diameter, it is a space partition parameter whose optimal value happen to be the diameter 
of the ions. Thus, the practice of incorporating different 𝑎 values from the actual size of (bare 
or solvated) cations and anions should be discarded. In addition, if the size of the cation differs 
too much from that of anion, the two assumptions of the lattice gas approximation can no 
longer hold simultaneously as the first assumption requires an 𝑎 value less than the smaller 
ion diameter and the second one requires an 𝑎 value more than the larger ion diameter. Thus, 
one should ensure that the cation and the anion are of similar size before applying lattice gas 
approximation related methods. If both ionic species are of spherical shape and have the 
smaller and the larger radius of 𝑟�Aa  and 𝑟�_�  respectively, we propose the condition 
𝑟�Aa/𝑟�_� > 0.74	as the criterium of two ions being of similar size (see SI for derivation). 

 
Derivation of Modified Poisson-Boltzmann (MPB) Equation6 
In the following derivation, we evaluate the three equations in eqn S10 to establish the MPB 
equation. For the simplicity of the mathematical derivation, we consider symmetric binary 
electrolyte of charge z (𝑧] = −𝑧G = 𝑧), and bulk concentration 𝐶∗.  
1) Evaluating ∂F/∂ψ=0  
Since 𝐶], 𝐶G, and 𝜓	are three independent variables, 𝑆 does not have dependence on 𝜓, thus 
∂S/∂ψ=0. At low electric potential, 𝜕𝜀/𝜕𝜓 = 0 , too. Thus, the Helmholtz free energy 
becomes: 

𝜕𝐹
𝜕𝜓 =

𝜕𝑈
𝜕𝜓 =

v𝑑𝒓 �H−
1
2 H
|∇𝜓|5

𝜕𝜀
𝜕𝜓 − 2𝜀∇

5𝜓O + 𝑧𝑒𝐶] − 𝑧𝑒𝐶GO� = 0 (S10a) 

Assume low electric potential such that ∂ε/∂ψ=0, we get the Poisson’s Equation: 
𝜀∇5𝜓 = −𝑧𝑒[𝐶] − 𝐶G] (S10b) 

 
2) Evaluating ∂F/∂C+=0 and ∂F/∂C-=0: 
𝜕𝐹
𝜕𝐶]

=
𝜕𝑈
𝜕𝐶]

− 𝑇
𝜕𝑆
𝜕𝐶]

= v𝑑𝒓[𝑧𝑒𝜓 − 𝜇] − 𝐶]
𝜕𝜇]
𝜕𝐶]

+ 𝑘~𝑇 ln
𝐶]𝑎=

1 − 𝐶]𝑎= − 𝐶G𝑎=
\

= 0 
(S10c) 

 
Similarly: 
𝜕𝐹
𝜕𝐶G

=
𝜕𝑈
𝜕𝐶G

− 𝑇
𝜕𝑆
𝜕𝐶G

= v𝑑𝒓 [−𝑧𝑒𝜓 − 𝜇G − 𝐶G
𝜕𝜇G
𝜕𝐶G

+ 𝑘~𝑇 ln
𝐶G𝑎=

1 − 𝐶]𝑎= − 𝐶G𝑎=
\

= 0 
(S10d) 

 
Furthermore, we assume 𝜇] and 𝜇G are constants, which is 𝜕𝜇±/𝜕𝐶± = 0. When there is no 
external electric potential (𝜓 = 0), the equilibrium state of the electrolyte can be described 
as 𝐶] = 𝐶G = 𝐶∗ . Meanwhile, the derivative of 𝐹  with respect to 𝐶]  and 𝐶G  are both 0. 
Substituting the condition into eqn S10c and S10d, one get: 

𝜕𝐹
𝜕𝐶]

�
����∗

= −𝜇] + 𝑘~𝑇 ln
𝐶∗𝑎=

1 − 2𝐶∗𝑎= = 0 (S10e) 

𝜕𝐹
𝜕𝐶G

�
����∗

= −𝜇G + 𝑘~𝑇 ln
𝐶∗𝑎=

1 − 2𝐶∗𝑎= = 0 (S10f) 
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Solve eqn S10e and eqn S10f, one gets 

𝜇] = 𝜇G = 𝑘~𝑇 ln
𝐶∗𝑎=

1 − 2𝐶∗𝑎= (S10g) 

 
Substitute eqn S10g back to eqn S10c, one gets 

𝑧𝑒𝜓 − 𝑘~𝑇 ln
𝐶∗𝑎=

1 − 2𝐶∗𝑎= + 𝑘~𝑇 ln
𝐶]𝑎=

1 − 𝐶]𝑎= − 𝐶G𝑎=
= 0 (S10h) 

 
Rearrange eqn S10h, one can eventually get 
 

𝑧𝑒𝜓
𝑘~𝑇

= ln[
𝐶∗𝑎=

1 − 2𝐶∗𝑎=
1 − 𝐶]𝑎= − 𝐶G𝑎=

𝐶]𝑎=
\	

𝑒G
I��
��N =

𝐶]
𝐶∗

1 − 2𝐶∗𝑎=

1 − 𝐶]𝑎= − 𝐶G𝑎=
	

𝐶] = 𝐶∗𝑒G
I��
��N

1 − 𝐶]𝑎= − 𝐶G𝑎=

1 − 2𝐶∗𝑎= 	 

 
 
 
 
(S10i) 

 
Similarly, one can obtain 

𝐶G = 𝐶∗𝑒
I��
��N

1 − 𝐶]𝑎= − 𝐶G𝑎=

1 − 2𝐶∗𝑎=  (S10j) 

 
In principle, by aligning eqn S10i and S10j, one can solve for 𝐶] and 𝐶G. The solution is: 

𝐶] =
𝐶∗𝑒G

I��
��N

1 − 2𝐶∗𝑎= + 𝐶∗𝑎=𝑒G
I��
��N + 𝐶∗𝑎=𝑒

I��
��N

 (S10k) 

𝐶G =
𝐶∗𝑒

I��
��N

1 − 2𝐶∗𝑎= + 𝐶∗𝑎=𝑒G
I��
��N + 𝐶∗𝑎=𝑒

I��
��N

 (S10l) 

 
Substitute eqn S10k and S10l into eqn S10b, we get the formula of the MPB model for 
symmetrical binary electrolyte of charge 𝑧 and concentration 𝐶∗. 

𝜀∇5𝜓 = −𝑧𝑒[𝐶] − 𝐶G]	

= −𝑧𝑒 �
𝐶∗𝑒G

I��
��N − 𝐶∗𝑒

I��
��N

1 − 2𝐶∗𝑎= + 𝐶∗𝑎=𝑒G
I��
��N + 𝐶∗𝑎=𝑒

I��
��N

�	

= 2𝑧𝑒𝐶∗ �
sinh x𝑧𝑒𝜓𝑘~𝑇

|

1 − 2𝐶∗𝑎= + 2𝐶∗𝑎= cosh x𝑧𝑒𝜓𝑘~𝑇
|
� 

 

(S10m) 

 
Derivation of the Generalized Modified Poisson Nernst Planck (GMPNP) equation7 
We start from the chemical potential established in eqn X10c and eqn X10d with the 
assumption that the chemical potential are constants (𝜕𝜇±/𝜕𝐶± = 0). The expression for 
chemical potential is then: 
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𝜇± =
𝜕𝐹
𝜕𝐶±

= ±𝑧𝑒𝜓 + 𝑘~𝑇𝑙𝑛 [
𝐶±𝑎=

1 − 𝐶]𝑎= − 𝐶G𝑎=
\ (S11) 

 
The GMPNP model relies the following postulate for near equilibrium mass transport: 

𝜕𝐶±
𝜕𝑡 = ∇ ∙ 𝐽± = ∇ ∙ (𝑏±𝐶±∇𝜇±) = 0 (S12) 

In eqn S12, 𝐽± and 𝑏± is the flux and the mobility of the ionic species. Substituting eqn S11 
into eqn S12: 

𝐽± = 𝑏±𝑐±∇j±𝑧𝑒𝜓 + 𝑘~𝑇𝑙𝑛 [
𝑐±𝑎=

1 − 𝑐]𝑎= − 𝑐G𝑎=
\m	

= 𝑏±𝑐± ¡∇(±𝑧𝑒𝜓) + 𝑘~𝑇∇j𝑙𝑛 [
𝑐±𝑎=

1 − 𝑐]𝑎= − 𝑐G𝑎=
\m¢	

=
±𝑧𝑒𝐷±𝑐±∇𝜓

𝑘~𝑇
+ 𝐷±𝑐±∇𝑙𝑛 [

𝑐±𝑎=

1 − 𝑐]𝑎= − 𝑐G𝑎=
\	

=
±𝑧𝑒𝐷±𝑐±∇𝜓

𝑘~𝑇
+ 𝐷±𝑐± [

∇𝑐±
𝑐±

+
𝑎=(∇c] + ∇𝑐G)

(1 − 𝑐]𝑎= − 𝑐G𝑎=)
\	

=
±𝑧𝑒𝐷±𝑐±∇𝜓

𝑘~𝑇
+ 𝐷±∇𝑐± + 𝐷±𝑐± [

𝑎=(∇c] + ∇𝑐G)
(1 − 𝑐]𝑎= − 𝑐G𝑎=)

\ 

 

(S12a) 

In eqn S12a, 𝐷± = 𝑘~𝑇𝑏± is the diffusion coefficient of the ionic species. For an equilibrium 
state, the total flux of the ionic species should be 0, which gives 

±𝑧𝑒𝐷±𝑐±∇𝜓
𝑘~𝑇

+ 𝐷±∇𝑐± + 𝐷±𝑐± [
𝑎=(∇c] + ∇𝑐G)

(1 − 𝑐]𝑎= − 𝑐G𝑎=)
\ = 0 (S12b) 

 
Note that the Poisson equation is still valid 

𝜀∇5𝜓 = −[𝑧]𝑒𝐶] − 𝑧G𝑒𝐶G] (S13) 
 
The GMPNP model is then established by solving the equation set composed of eqn S12b 
and S13. 
Derivation of the recommend threshold for size similarity. 
As is shown in the diagram below, we consider an extreme condition in which the box that 
can perfectly encapsulate one larger ion can also perfectly enclose two smaller ions.  
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The geometric relation between 𝑟�Aa, 𝑟�_�, and 𝑎 satisfies the following: 
For 𝑟�_�, we have 𝑟�_� = 𝑎/2 (top right) 
For 𝑟�Aa, we have (𝑎 − 2𝑟�Aa)5 + W√2𝑎 − 2√2𝑟�AaZ

5
= 4𝑟�Aa5 . (bottom right) 

Solve it, we find 𝑟�Aa = (2 − 2√6/3)𝑎 
The ratio, 𝑟�Aa/𝑟�_� = (4 − 4√6/3) ≈ 0.74 
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Figure S1. Computed distribution of electron density on the surface of  various 
nanostructured electrodes. (a) CuPd electrodes including 7-nm CuPd tetrapods, 50-nm CuPd 
tetrapod, and CuPd nanoparticle.8 (b) Au electrodes including Au needles, Au rods and Au 
particle.9 (c) Fluorine doped carbon electrodes including fluorine-doped cagelike porous 
carbon (F-CPC) and fluorine-doped carbon sphere (F-CS).10 (d) Cu@Sn electrodes including 
Cu@Sn nanocone and bulk Sn.11 

 
Figure S2. Computed distribution of  K+ density distribution on the surface of various 
nanostructured electrodes. (a) CdS needles with different gaps.12 (b) Au needle.9 (c) Fluorine 
doped carbon electrodes including fluorine-doped cagelike porous carbon (F-CPC) and 
fluorine-doped carbon sphere (F-CS).10 (d) Cu@Sn electrodes including Cu@Sn nanocone and 
bulk Sn.11 (e)  Cu dentrites (Cu-D) and Cu particles (Cu-P).13 
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Figure S3. Computed concentration of species on various nanostructured electrodes. (a-f) 
Species of CO2, C1, C2, and C3 around multi-hollow Cu2O electrode: the concentration 
distribution of (a) CO2, (b) C1, (c) C2, (d) C3, and the species C2/C1 ratio as a function of (e) 
different catalysts and (f) number of holes, Colour scale, in mol/L.14 (g) hydroxide ion (OH-) 
around c-wrinkle cavities with different D parameters ranging 400nm to 2.2 um.15  (h) Species 
of CO, CH4 and C2H4 around copper-porphyrin frameworks, Colour scale, in mol/m3. 16 (i) 
Species C2/C1 concentration ratio over single 1-shell, 2-shell and 3-shell hollow multi-shell 
structured copper.17 (j) CO, C2 and C3 concentrations on the Cu nanocavity electrode, colour 
scale, in mmol/L.18  
 
 
 

 
Figure S4. The electrode geometries used in this work: (a) 2D nanostar, (b) 2D nanocone, 
and (c) 3D branched nanoparticle. 
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Figure S5. a) FEM simulation domain setup and b) the dimension of the star electrode. 
 
 

 
Figure S6. Comparison between results obtained from Poisson-Nernst-Planck (PNP) model, a 
generalized modified PNP (GMPNP) model and modified Poisson-Boltzmann model for (a,d) 
space charge density (𝜌), (b,e) potential (𝜙) Subscript OHP means the measurement at OHP. 
Considering the difficulty in solving GMPNP numerically, all results are obtained using a planar 
model with applied potential of -0.4 V vs PZC and the electrolyte of 0.5 M KHCO3. 
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Figure S7. Simulations performed for 2D nanostar nanoparticle. (a) The potential (𝜙), (b) 
electric field (E-field) (c) K+ concentration and (d) current density in metal (𝐽��Q_� ) and 
adjacent electrolyte (𝐽���^QY`�§Q� ). The results in (a), (b) and (c) are obtained from MPB & Booth 
model with the electrolyte of 500 mM KHCO3 and potential of -0.8V vs PZC, the reaction 
current density (𝐽���^QY`�§Q� ) in (d) is calculated using 𝐽 �^]© . 
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Procedures for simulating E-field and current densities in nanoelectrodes 
 
Links to the tutorial videos: 
 
1) FEM simulations of nanoscale electrocatalysts: E-field distribution 
https://youtu.be/wBlkXgpIpwg  
 
2) FEM simulations of nanoscale electrocatalysts: electrode current density 
https://youtu.be/adH_eoU0GP8 
 
3) FEM simulations of nanoscale electrocatalysts: reaction current density distribution 
https://youtu.be/a8Su3rCyhIU 
 
Detailed procedure of E-field simulation in COMSOL and the corresponding parameters 
 
Step 1: Units Setup 

1. Length unit: nm 

2. Angular unit: radians  

 

Step 2: Parameter definitions 

1.Parameters for constructing the nanostar electrode 

 
 
 
 
 
 
 
 

 

 

2. Parameters for setting up the physical interfaces 

 

Name Expression Description 
r0 30[nm] inner radius of star 
R0 70[nm] outer radius of star 
h_sub 50[nm] heigh of substrate 
w_sub 5000[nm] width of substrate 
theta1 -(72)/360*2*pi  An angel for modelling the nanostar 

y_b_s 
(r0+(R0-r0)*(cos(theta1*5)+1)/2)*sin(theta1)+(R0-
r0)*cos(72/360*2*pi) 

y coordinate of nanostar bottom 

sy_offset -3.2[nm]  The cut off part of the nanostar 
d_edl 0.33[nm] thickness of the electric double layer 
h_dom 5000[nm] heigh of simulation domain 
w_dom 5000[nm] width of simulation domain 

Name Expression Description 
v_c -0.8[V] cathode potential vs PZC 
v_a 0[V] anode potential 
c_bulk 500[mM] electrolyte bulk concentration 
T 293.15[K] temperature 
e 1.602176634E-19[C] electron charge 
beta 1.41e-8[m/V] a constant in Booth model 
Kb 1.381E-23 [m^2*kg*K^-1*s^-2] Boltzmann constant 
n 1.33 the refractive index of the electrolyte 
rp 78 relative permittivity 
NA 6.022E23[mol^-1] Avogadro’s number 
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The parameters required in the simulation should be defined in advance for convenience. 
These pre-defined parameters can then be used in subsequent simulations, avoiding 
entering these values and equations repeatedly.  

 
Step3: Geometry modelling  

Three different options of geometry modelling in COMSOL 

1. Use built-in geometry primitives  

2. Use mathematical expression 

3. Use ‘Import’ function 

The model can be constructed in a 3D modeling software (e.g., 3D Max and Solidworks) 
saved as a .mphbin or .stl file, which then can be imported into COMSOL. 

1. Nanostar electrode modelling (mathematical expression) 

Parameter Name: theta   
Range:  min: 0 max: 2*pi 
x expressions: (r0+(R0-r0)*(cos(theta*5)+1)/2)*cos(theta) 
y expressions: (r0+(R0-r0)*(cos(theta*5)+1)/2)*sin(theta) 
Rotation angle: 18/360*2*pi 
2. Electic double layer modelling (mathematical expression) 

Parameter name: theta  

Range: min: 0  max: 2*pi 

x expression: 

 ((r0+(R0-r0)*(cos(theta*5)+1)/2)+sqrt(1+(5*(R0-r0)*sin(5*theta)/(2*(r0+(R0-
r0)*(cos(theta*5)+1)/2)))^2)*d_edl)*cos(theta) 

y expression:  

((r0+(R0-r0)*(cos(theta*5)+1)/2)+sqrt(1+(5*(R0-r0)*sin(5*theta)/(2*(r0+(R0-
r0)*(cos(theta*5)+1)/2)))^2)*d_edl)*sin(theta) 

Rotation angle: 18/360*2*pi 

3. Substrate modelling (geometry primitivities)  

Width:  w_sub 

Height:  h_sub 

Position: x:  0   

Position: y:  y_b_s-h_sub/2+sy_offset 



 14 

The substrate is introduced in the model and integrated with the nanostar geometry to 
represent substrate-supported nanoparticles used as an electrode. 
 
4. Electrolyte domain modelling (geometry primitivities)  

Width: w_dom 

Heigh: h_dom 

Position x:  -w_dom/2  y:   y_b_s+sy_offset 

5. Add ‘Union’ function  

Union" function is used to integrate the substrate and the nanostar, thereby making a 
continuous geometric model. 
 
Step4: Material Setup 

Add materials from built-in material bank in COMSOL 

Water(liquid)   

Gold(solid) 

 
Step5: Defining domains and boundary conditions for the model 

1. cathode surface boundary 
2. anode surface boundary 
3. OHP surface boundary 
4. electrolyte  domain 
5. electrolyte_OHP domain 
6. sub_nanostar_OHP domain 
7. OHP  domain 
In this step, the boundaries and domains used in the simulation are defined in advance for 
the purpose of convenience.  
 
Step 6: ‘Electrostatic’ interface setup 

1. diffuse layer 

electric potential anode: v_a 

surface charge density OHP: rho_surf 

space charge density: -d_sc 

2. Stern layer 

electric potential cathode: v_c 

electric potential ohp:  V 
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Step 7: ‘Variable’ definition in Component 
 

 
 
 

Step 8: ‘Mesh’ setup 

Size 1   Max: 0.33 [nm] Min:0.01 [nm] 

Free Triangular  

There two options of the mesh for 2D simulation in COMSOL: ’Free triangular’ and 
‘Mapped’. Here, Free triangular mesh is applied as an example. 
 

Step 9: ‘Study’ setup 

Study type: Stationary 
A stationary analysis solver for stationary displacement or a steady-state condition. 
 
Run the study 
Hit ‘Compute’ 
Depending on how detailed the model is, the run time can vary from min to hours. 
 
Step 10: Plotting ‘Results 

Plotting electric field: 

Variable name: es.normE 

The variable name can be found in ‘Component 1’ > ‘Electrostatic_diffuse_layer’ > ‘Electric’ 

 
Detailed procedure of reaction current density simulation in COMSOL and the 
corresponding parameters 
 
Step1: Units setup 
Length unit: nm 
Angular unit: radians  
 
Step2: Parameter definitions 

Name Expression Description 
v_c -0.3[V] cathode potential vs RHE 
v_a 0[V] anode potential vs RHE 
c_bulk 500[mM] electrolyte bulk concentration 
c_bulk_CO2 38[mol/m^3] CO2 bulk concentration 
T 293.15[K] temperature 
D_HCO3 1.185e-9[m^2*s^-1] Diffusion coefficient of HCO3 
D_K 1.957e-9[m^2*s^-1] Diffusion coefficient of K 
D_CO2 1.91e-9[m^2*s^-1] Diffusion coefficient of CO2 
Veq_c -0.11 [V] Equilibrium potential of CO2 to CO 

 

Name Expression Description 
deltaphi v_c-V potential difference  
V 2*(0.66[nm])^3*NA*c_bulk the packing parameter 
rho_surf epsilon0_const*78*deltaphi/d_edl surface charge density on OHP 
d_sc (2*e*NA*c_bulk*sinh(e*V/Kb/T))/(1+2*v*(sinh(e*V/Kb/T/2))^2)  space charge density 
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The parameters required in the simulation should be defined in advance for convenience. 
These pre-defined parameters can then be used in subsequent simulations, avoiding 
entering these values and equations repeatedly.  

Step3: Geometry modelling 

Import the pre-built geometry file using ‘import’ function; 

The model was constructed in electric field simulation in COMSOL saved as a .mphbin file, 
which can be imported into COMSOL for reaction current density simulation by using 
‘import’ function. 

 
Step4: Material Setup 

Add materials from built-in material bank in COMSOL 

Water(liquid)   

Gold(solid) 

 
Step5: Defining domains and boundary conditions for the model 

1. cathode surface boundary 
2. anode surface boundary 
3. nanostar surface boundary 

In this step, the boundaries and domains used in the simulation are defined in advance for 
the purpose of convenience.  
 
Step 6: ‘Tertiary Current Distribution, Nernst-Plank (tcd)’ interface setup 

COMSOL provides various types of reaction current density simulation in Electrochemistry 
module: 

1. Primary Current Distribution  
2. Secondary Current Distribution  
3. Tertiary Current Distribution 
4. The modelling approach based on combining Secondary Current Distribution with the 

mass transport effect can be achieved by combining the Secondary Current 
Distribution interface with Transport of Diluted Species (tds). 

 

Here, Tertiary Current Distribution is performed as an example. 

1. Dependent variables 

Number of variables: 3 

Concentration: HCO3, K, CO2 

2. Electrolyte 

Diffusion coefficient: D_HCO3  D_K   D_CO2 
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Charge number: Z_HCO3: -1   Z_K: 1 Z_CO2:0 

3. Initial values: 

K: c_bulk     CO2: c_bulk_CO2 

4. Concentration: 

C0,K: c_bulk     C0,CO2: c_bulk_CO2   Boundary: anode_surface 

5. Electrode reaction on cathode surface 

Number of participating electrons: 2 

Stoichiometric coefficients: 

Vk: 0 

Vco2: -1 

Equilibrium potential: Veq_c 

6. Electrode kinetics 

COMSOL provides various types of Kinetics expression type: 

• Concentration dependent kinetics 
• Butler-Volmer 
• Linearized Butler-Volmer 
• Tafel equation 

 

Here, Concentration dependent kinetics is applied as an example. 

 

Kinetic expression type: Concentration dependent kinetics 

Exchange current density:  1e2[A/m^2] 

Anodic transfer coefficient: 0.5 

Cathodic transfer coefficient: 0.5 

Reduced species expression: 1 

Oxidized species expression: CO2/c_bulk_CO2 

7. Anode surface 

Electrolyte potential: v_a 

 

Step 7: ‘Mesh’ setup 

Size 1   Max: 10 [nm] Min:1 [nm] 

Free Triangular  

There are two options of the mesh for 2D simulation in COMSOL: ‘Free triangular’ and 
‘Mapped’. Here, Free triangular mesh is applied as an example 

Boundary layer 
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Number of Boundary layer: 8 

Boundary layer stretching factor: 1.2 

 

Boundary layer is required to mesh the electrode surface properly considering the 
importance of the surface reaction to this simulation. 

 

Step 8: ‘Study’ setup 

Study type: Stationary 

A stationary analysis solves for stationary displacements or a steady-state condition; 

Run the study 

Hit ‘Compute’; 

Depending on how detailed the model is, the run time can vary from min to hours; 

 

Step 9: Plotting ‘Results 

Plotting reaction current density: 

Variable name: tcd.IIMag 

The variable name can be found in ‘Component 1’ > ‘Tertiary Current Distribution, Nernst-
Plank’ 

 
Detailed procedure of electrode current density simulation in COMSOL and the 
corresponding parameters 
 
Step1: Units setup 

Length unit: nm 

Angular unit: radians  

 

Step2: Parameter definitions 
Name Expression Description 
v_a 0[V] anode potential vs RHE 
rp_electrolyte 78 Relative permittivity of electrolyte  
rp_metal 1 Relative permittivity of metal 
ec_electrolyte 5.8 [S/m] Electric conductivity of electrolyte 
ec_metal 45.6e6[S/m] Electric conductivity of metal 
I_ave 100[mA/cm^2] 1000 A/m² 

 
The parameters required in the simulation should be defined in advance for convenience. 
These pre-defined parameters can then be used in subsequent simulations, avoiding 
entering these values and equations repeatedly.  
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Step3: Geometry modelling 

Import the pre-built geometry file using ‘import’ function; 

The model was constructed in electric field simulation in COMSOL saved as a .mphbin file, 
which can be imported into COMSOL for reaction current density simulation by using 
‘import’ function. 

 

Step4: Material Setup 

Add materials from built-in material bank in COMSOL 

Water(liquid)   

Gold(solid) 

 

Step5: Defining domains and boundary conditions for the model 

1. cathode surface boundary 

2. anode surface boundary 

3. nanostar surface boundary 

In this step, the boundaries and domains used in the simulation are defined in advance for 
the purpose of convenience. 

 

Step 6: ‘Electric Current’ interface setup 

 

Electric potential anode: v_a 

Normal current density: I_ave 

 

Step 7: ‘Mesh’ setup 

Size 1   Max: 10 [nm] Min:1 [nm] 

Free Triangular  

There are two options of the mesh for 2D simulation in COMSOL: ‘Free triangular’ and 
‘Mapped’. Here, Free triangular mesh is applied as an example. 

 

Step 8: ‘Study’ setup 

 

Study type: Stationary 

A stationary analysis solves for stationary displacements or a steady-state condition; 

 

Run the study 
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Hit ‘Compute’; 

Depending on how detailed the model is, the run time can vary from min to hours; 

 

Step 9: Plotting ‘Results’  

 

Plotting electrode current density: 

Variable name: ec.normJ 

The variable name can be found in ‘Component 1’ > ‘Electric Current’ > ‘Currents and 
charge’ 
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