Supplementary Information: Recalibrating the calcium trap in amino acid carboxyl groups via classical molecular dynamics simulations

Janou A. Koskamp¹, Sergio E. Ruiz Hernandez¹, Nora H. de Leeuw^{1,2} and Mariette Wolthers^{1*}

a.1 Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands; j.a.koskamp@uu.nl (J.A.K.); s.e.ruizhernandez@uu.nl (S.E.R.H.); n.h.deleeuw@uu.nl (N.H.d.L.)

b.2 School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; n.h.deleeuw@leeds.ac.uk (N.H.d.L.)

^{c. *} Correspondence: m.wolthers@uu.nl; Tel.: +31302535042

Lennard-Jones potentials Ca – Aspartic Acid

The intermolecular Lennard-Jones potentials between Ca and Aspartic Acid according to the different calcium potential parameters, Set_1, Set_2, and Set_3 as mentioned in Table 1 in the main text.

Table S1 Lennard-Jones potential parameters Ca - Aspartic acid Set_1

Atom i	Atom j	ε _{ij} eV	σ _{ij} (Å)
Са	N		
		0.01212336177754750	3.33809926201551
Ca	H1		
		0.00368424682452194	2.24763923086026
Ca	СТ		
		0.00972539310852265	3.41293475422537
Са	H2		
		0.00368424682452194	2.69308858950367
Са	H3		
		0.00368424682452194	3.03786639363011
Са	C2		
		0.00862279272582844	3.41293475397241
Са	OD		
		0.01347436327552800	3.19306095082234

Table S2 Lennard-Jones potential parameters Ca - Aspartic acid Set_2

Atom i	Atom j	ε _{ij} eV	σ _{ij} (Å)
Ca	N		
		0.000993522376406289	3.39225326201551
Ca	H1		
		0.000301927941072037	2.30179323086026
Ca	СТ		
		0.000797006296599970	3.46708875422537
Ca	H2		
		0.000301927941072037	2.74724258950367
Ca	Н3		
		0.000301927941072037	3.09202039363011
Ca	C2		
		0.000706647023937694	3.46708875397241
Ca	OD		
		0.001104238384344610	3.24721495082234

Table S3 Lennard-Jones potential parameters Ca - Aspartic acid Set_3

Atom i	Atom j	ε _{ij} eV	σ _{ij} (Å)
Ca	N	0.00285309254151	3.24860426201551
Ca	H1	0.00086704474625	2.15814423086026
Ca	СТ	0.00228875843601	3.32343975422537
Ca	H2	0.00086704474625	2.60359358950367
Са	H3	0.00086704474625	2.94837139363011
Са	C2	0.00202927422809	3.32343975397241
Са	OD	0.00317103507000	3.10356595082234

Supplementary Graphs and Figures

Figure S2 Radial distribution function (left axis) and corresponding integral (N(r)) (right axis) between Ca^{2+} , C_c , O_c , and O_w , after 30 ns of simulation. **D-Asp** using different forcefields; Set_3_{unmodified} (red; •), Set_3_{c+0.5%} (blue; +), Set_3_{c+1.0%} (orange; +), and Set_3_{c+2.0%} (green; \checkmark)

Figure S3 Radial distribution function between Ca²⁺, C_c, O_c, with the different functional groups in aspartic acid after 30 ns of simulation. **D-Asp** using different forcefields; Set_ $3_{unmodified}$ (red; \bullet), Set_ $3_{\sigma+0.5\%}$ (blue; \ddagger), Set_ $3_{\sigma+1.0\%}$ (orange; +), and Set_ $3_{\sigma+2.0\%}$ (green; \checkmark)

Figure S 4 Radial distribution function (left axis) and corresponding integral (N(r)) (right axis) between Ca^{2+} , C_c , O_c , and O_w , after 30 ns of simulation. L-Asp using different forcefields; Set_3_{unmodified} (red; \bullet), Set_3_{v+0.5%or+0.5%} (blue; +), Set_3_{v+1.0%o} (orange; +), and Set_3_{v+2.0%o} (green; \checkmark)

Figure S 5 Radial distribution function between Ca^{2+} , C_c , O_c , with the different functional groups in aspartic acid after 30 ns of simulation. L-Asp using different forcefields; Set_3_{unmodified} (red; \bullet), Set_3_{a+0.5%} (blue; +), Set_3_{a+1.0%} (orange; +), and Set_3_{a+2.0%} (green; \checkmark)