Supporting Information: Q-Band Relaxation in Chlorophyll: New Insights from Multireference Quantum Dynamics

Sebastian Reiter,^{†,¶} Lena Bäuml,^{†,¶} Jürgen Hauer,[‡] and Regina de Vivie-Riedle^{*,†}

†Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 11, 81377 Munich, Germany

Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany ¶Contributed equally to this work

E-mail: regina.de vivie@cup.uni-muenchen.de

Contents

1	Infl	uence	of the Phytyl Chain	S-3
2	Ben	chmar	ks of Multireference Calculations	S-4
	2.1	Active	Space Size and Composition	S-4
	2.2	IPEA	and Imaginary Shifts	S-9
		2.2.1	SA6-CASSCF(6,6) \rightarrow XMS-CASPT2	S-9
		2.2.2	SA4-CASSCF(6,6) \rightarrow SA6-CASCI(6,6) \rightarrow XMS-CASPT2	S-11
3	Opt	imized	l Geometries and Coordinate Vectors	S-13
4	Ene	ergy Le	evels at Minimum Energy Geometries	S-13
5	Pot	ential	Energy Surfaces	S-14
6	Nor	n-adiab	oatic Coupling Matrix Elements	S-16
7	Tra	nsition	Dipole Moments	S-17
8	Qua	antum	Dynamics	S-18
9	Ove	erlap o	f Normal Modes with the NAC Vector	S-20
10	San	ple O	penMolcas Input	S-28
Re	efere	nces		S-30

1 Influence of the Phytyl Chain

Figure S1: Absorption energy of Q_y for different lengths of the phythyl chain. Red lines indicate the cut bonds that were saturated with hydrogen atoms for each data point.

2 Benchmarks of Multireference Calculations

2.1 Active Space Size and Composition

We tested three active spaces ranging from the (6,6) space shown in the main manuscript over (8,8) and (10,10) to (22,22), whose compositions are shown in figs. S2 to S4 respectively. Absolute energies along with the characters of the leading configurations of the first six roots are listed in table S1. Excitation energies relative to the ground state are compiled in table S2.

Figure S2: Active space for the XMS-CASPT2(8,8) calculation.

Figure S3: Active space for the XMS-CASPT2(10,10) calculation.

Figure S4: Active space for the MS-RASPT2(22,1,1;9,4,9) and MS-RASPT2(22,2,2;9,4,9) calculations. The notation refers to 22 electrons in the active space, where the subspaces RAS 1, RAS 2 and RAS 3 contain 9, 4 and 9 orbitals, respectively and single or double excitations are allowed from RAS 1 or into RAS 3. All excitations are allowed between the four Gouterman orbitals in RAS 2. State-averaging and MS-CASPT2 was performed over six roots.

Table S1: Energies $(E_{\rm h})$ and leading CI coefficients of the first six roots of a chlorophyll *a* model with different active spaces. State-averaging was performed over six roots and an IPEA-shift of 0.25 and an imaginary shift of 0.1 was applied for all of the CASPT2 calculations in these tests.

method	root 1	root 2	root 3
XMS-CASPT2(6,6)	-2184.71470585	-2184.61666043	-2184.60533006
	(GS, c = -0.93651)	$(\pi_1 \rightarrow \pi_1^*, c = -0.72107)$	$(\pi_2 \rightarrow \pi_1^*, c = -0.66005)$
XMS-CASPT2(8,8)	-2184.70700256	-2184.61015970	-2184.59043254
	(GS, c = 0.924095)	$(\pi_1 \to \pi_1^*, c = 0.857211)$	$(\pi_1 \to \pi_2^*, c = 0.631309)$
XMS-CASPT2(10,10)	-2184.70445539	-2184.60738802	-2184.59273935
	(GS, c = -0.913262)	$(\pi_1 \to \pi *_1, c = 0.749743)$	$(\pi_2 \to \pi_1^*, c = -0.691811)$
MS-RASPT2(22,9,9;22,1,1)	-2184.60360263	-2184.51769497	-2184.50286833
	(GS, c = -0.903649)	$(\pi_1 \to \pi_1^*, c = -0.824469)$	$(\pi_2 \to \pi_1^*, c = 0.732545)$
MS-RASPT2(22,9,9;22,2,2)	-2184.67589339	-2184.58995682	-2184.57484134
	(GS, c = 0.868498)	$(\pi_1 \to \pi_1^*, c = 0.818706)$	$(\pi_2 \to \pi_1^*, c = -0.723248)$
method	root 4	root 5	root 6
XMS-CASPT2(6,6)	-2184.56908121	-2184.56256371	-2184.53758146
	$(\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.46428)$	$(\pi_1 \to \pi_2^*, c = 0.46540)$	$(\pi_2 \to \pi_2^*, c = 0.44586)$
XMS-CASPT2(8,8)	-2184.54966707	-2184.54543501	-2184.53235822
	$(\pi_2 \to \pi_1^*, c = 0.432443)$	$(\pi_2, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.451272)$	$(\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.593435)$
XMS-CASPT2(10,10)	-2184.55523511	-2184.54431714	-2184.51378096
	$(\pi_1 \to \pi_2^*, c = -0.415712)$	$(\pi_2, \pi_1 \to \pi_1^*, \pi_1^*, c = 0.492806)$	$(\pi_1, \pi_1 \to \pi_2^*, \pi_2^*, c = -0.421454)$
MS-RASPT2(22,9,9;22,1,1)	-2184.47897065	-2184.45661819	-2184.45085734
	$(\pi_1 \to \pi_2^*, c = 0.649248)$	$(\pi_2, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.602604)$	$(\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.622145)$
MS-RASPT2(22,9,9;22,2,2)	-2184.54673920	-2184.52908185	-2184.51453413
	$(\pi_1 \to \pi_2^*, c = 0.701008)$	$(\pi_2 \to \pi_2^*, c = -0.672110)$	$(\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = 0.736266)$

Table S2: Relative energies (eV) of the first six roots of a chlorophyll a model with different active spaces. State-averaging was performed over six roots and an IPEA-shift of 0.25 and an imaginary shift of 0.1 was applied for all of the CASPT2 calculations in these tests.

method	root 1	root 2	root 3	root 4	root 5	root 6	$ Q_x - Q_y $
XMS-CASPT2(6,6)	0.00	2.67	2.98	3.96	4.14	4.82	0.31
XMS-CASPT2(8,8)	0.00	2.64	3.17	4.28	4.40	4.75	0.54
XMS-CASPT2(10,10)	0.00	2.64	3.04	4.06	4.36	5.19	0.40
MS-RASPT2(22,9,9;22,1,1)	0.00	2.34	2.74	3.39	4.00	4.16	0.40
MS-RASPT2(22,9,9;22,2,2)	0.00	2.34	2.75	3.51	3.99	4.39	0.41

2.2 IPEA and Imaginary Shifts

2.2.1 SA6-CASSCF(6,6) \rightarrow XMS-CASPT2

Table S3: Absolute energies $(E_{\rm h})$ of the first six roots of a chlorophyll a model with different level shifts at the SA6-CASSCF(6,6)/XMS-CASPT2 level of theory.

IPEA	Imag.	root 1	root 2	root 3
0.00	0.00	-2184.72415897	-2184.68837625	-2184.66185535
		(GS, c = -0.93243)	$(\pi_3 \to \pi_1^*, c = 0.484950)$	$(\pi_1 \to \pi_1^*, c = -0.60471)$
0.00	0.20	-2184.72357950	-2184.65485037	-2184.64811020
0.00*	0.05	(GS, c = 0.929222)	$(\pi_1 \to \pi_1^*, c = 0.67156)$	$(\pi_2 \to \pi_1^*, c = -0.658412)$
0.00^{*}	0.25	-2184.70320053	-2184.64673205	
0.10	0.00	(GS, c = -0.940482)	$(\pi_2 \to \pi_1^+, c = 0.76015)$	$(\pi_1 \to \pi_1^+, c = -0.750108)$
0.10	0.00	-2184.71931571	-2184.63846089	-2184.03200879
0.10	0.10	(GS, c = -0.94338)	$(\pi_1 \to \pi_1, c \equiv 0.67764)$	$(\pi_2 \to \pi_1, c = -0.04904)$
0.10	0.10	-2184.(1941552)	-2184.03881300	-2164.05115895
0.10	0.20	$(GS, \mathcal{C} = 0.94128)$ -2184 71017171	$(\pi_1 \to \pi_1 \ , c = 0.09024)$ -2184 63677155	$(\pi_2 \rightarrow \pi_1, c = -0.00157)$ -2184 62745227
0.10	0.20	(CS c - 0.93992)	$(\pi_1 \rightarrow \pi^* c = 0.71317)$	$(\pi_2 \rightarrow \pi^* c = -0.68969)$
0.25	0.00	$-2184\ 71474167$	$-2184\ 61984561$	$(\pi_2 - 7 \pi_1, c = -0.00000)$ -2184 61147716
0.20	0.00	(GS. c = -0.93753)	$(\pi_1 \rightarrow \pi_1^*, c = -0.73191)$	$(\pi_2 \rightarrow \pi_1^*, c = -0.71099)$
0.25^{*}	0.00	-2184.69708086	-2184.60978223	-2184.60289128
		(GS, c = -0.94543)	$(\pi_1 \to \pi_1^*, c = -0.71319)$	$(\pi_2 \to \pi_1^*, c = 0.64882)$
0.25	0.10	-2184.71470585	-2184.61666043	-2184.60533006
		(GS, c = -0.93651)	$(\pi_1 \to \pi_1^*, c = -0.72107)$	$(\pi_2 \to \pi_1^*, c = -0.66005)$
0.25	0.20	-2184.71437778	-2184.61529367	-2184.60262515
		(GS, c = -0.94705)	$(\pi_1 \to \pi_1^*, c = -0.75842)$	$(\pi_2 \to \pi_1^*, c = -0.71745)$
IPEA	Imag.	root 4	root 5	root 6
0.00	0.00	-2184.65556601	-2184.64057694	-2184.60326590
		$(\pi_2 \to \pi_1^*, c = -0.53992)$	$(\pi_2 \to \pi_1^*, c = -0.61788)$	$(\pi_2 \to \pi_2^* , c = 0.50952)$
0.00	0.20	-2184.61864975	-2184.61611037	-2184.57877185
		$(\pi_1 \to \pi_2^*, c = -0.48719)$	$(\pi_1 \to \pi_1^*, c = -0.46075)$	$(\pi_3 \to \pi_1^*, c = 0.43852)$
0.00^{*}	0.25	-2184.61363127		
0.10	0.00	$(\pi_1 \to \pi_2^*, c = -0.76884)$	$(\pi_1 \to \pi_1^*, c = -0.35516)$	$(\pi_3 \to \pi_1^*, c = 0.42617)$
0.10	0.00	-2184.00972278	-2184.59464721	-2184.519(113)
0.10		$(\pi_1 \to \pi_2, c = -0.00871)$	$(\pi_2 \to \pi_2^2, c = 0.54855)$	$(\pi_3 \to \pi_1^-, c = 0.42951)$
0.10	0.10	2184 50808455	2184 50026402	2184 56688608
	0.10	-2184.59808455 $(\pi_{*} \rightarrow \pi^{*} c = -0.51967)$	-2184.59026492 $(\pi_2 \rightarrow \pi^* c = 0.45384)$	-2184.56688608 $(\pi_0 \rightarrow \pi^* - c = 0.44241)$
0.10	0.10	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865	$-2184.59026492 (\pi_2 \to \pi_2^*, c = 0.45384) -2184,58657928$	$-2184.56688608 (\pi_3 \to \pi_1^*, c = 0.44241) -2184.56172721$
0.10	0.10 0.20	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865 $(\pi_1 \to \pi_2^*, c = -0.47851)$	-2184.59026492 $(\pi_2 \to \pi_2^*, c = 0.45384)$ -2184.58657928 $(\pi_1 \to \pi_2^*, c = 0.40944)$	$-2184.56688608 (\pi_3 \to \pi_1^*, c = 0.44241) -2184.56172721 (\pi_2 \to \pi_1^*, c = 0.44333)$
0.10 0.25	0.10 0.20 0.00	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865 $(\pi_1 \to \pi_2^*, c = -0.47851)$ -2184.57627155	-2184.59026492 $(\pi_2 \to \pi_2^*, c = 0.45384)$ -2184.58657928 $(\pi_1 \to \pi_2^*, c = 0.40944)$ -2184.57019047	$-2184.56688608 (\pi_3 \to \pi_1^*, c = 0.44241) -2184.56172721 (\pi_3 \to \pi_1^*, c = 0.44333) -2184.48928302$
0.10 0.25	0.10 0.20 0.00	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865 $(\pi_1 \to \pi_2^*, c = -0.47851)$ -2184.57627155 $(\pi_1 \to \pi_2^*, c = -0.62402)$	-2184.59026492 $(\pi_2 \to \pi_2^*, c = 0.45384)$ -2184.58657928 $(\pi_1 \to \pi_2^*, c = 0.40944)$ -2184.57019047 $(\pi_2 \to \pi_2^*, c = 0.52480)$	-2184.56688608 $(\pi_3 \to \pi_1^*, c = 0.44241)$ -2184.56172721 $(\pi_3 \to \pi_1^*, c = 0.44333)$ -2184.48928302 $(\pi_1, \pi_3 \to \pi_1^*, c = -0.42205)$
0.10 0.25 0.25^*	0.10 0.20 0.00 0.00	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865 $(\pi_1 \to \pi_2^*, c = -0.47851)$ -2184.57627155 $(\pi_1 \to \pi_2^*, c = -0.62402)$ -2184.56989501	$\begin{array}{c} -2184.59026492 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.45384) \\ -2184.58657928 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.40944) \\ -2184.57019047 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.52480) \\ -2184.55840357 \end{array}$	$\begin{aligned} &-2184.56688608\\ (\pi_3 \to \pi_1^* \ , \ c = 0.44241)\\ &-2184.56172721\\ (\pi_3 \to \pi_1^* \ , \ c = 0.44333)\\ &-2184.48928302\\ (\pi_1, \pi_3 \to \pi_1^* \ , \ c = -0.42205)\\ &-2184.53805303 \end{aligned}$
0.10 0.25 0.25^*	0.10 0.20 0.00 0.00	-2184.59808455 $(\pi_1 \to \pi_2^*, c = -0.51967)$ -2184.59297865 $(\pi_1 \to \pi_2^*, c = -0.47851)$ -2184.57627155 $(\pi_1 \to \pi_2^*, c = -0.62402)$ -2184.56989501 $(\pi_1 \to \pi_2^*, c = -0.81041)$	$\begin{array}{c} -2184.59026492 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.45384) \\ -2184.58657928 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.40944) \\ -2184.57019047 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.52480) \\ -2184.55840357 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.65376) \end{array}$	$\begin{array}{c} -2184.56688608\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44241)\\ -2184.56172721\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44333)\\ -2184.48928302\\ (\pi_1, \pi_3 \rightarrow \pi_1^* \ , \ c = -0.42205)\\ -2184.53805303\\ (\pi_1, \pi_1 \rightarrow \pi_1^*, \pi_1^* \ , \ c = -0.65947) \end{array}$
0.10 0.25 0.25* 0.25	0.10 0.20 0.00 0.00 0.10	$\begin{aligned} &-2184.59808455\\ (\pi_1 \to \pi_2^*, c = -0.51967)\\ &-2184.59297865\\ (\pi_1 \to \pi_2^*, c = -0.47851)\\ &-2184.57627155\\ (\pi_1 \to \pi_2^*, c = -0.62402)\\ &-2184.56989501\\ (\pi_1 \to \pi_2^*, c = -0.81041)\\ &-2184.56908121\end{aligned}$	$\begin{array}{c} -2184.59026492 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.45384) \\ -2184.58657928 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.40944) \\ -2184.57019047 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.52480) \\ -2184.55840357 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.65376) \\ -2184.56256371 \end{array}$	$\begin{array}{c} -2184.56688608 \\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44241) \\ -2184.56172721 \\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44333) \\ -2184.48928302 \\ (\pi_1, \pi_3 \rightarrow \pi_1^* \ , \ c = -0.42205) \\ -2184.53805303 \\ (\pi_1, \pi_1 \rightarrow \pi_1^*, \pi_1^* \ , \ c = -0.65947) \\ -2184.53758146 \end{array}$
0.10 0.25 0.25* 0.25	0.10 0.20 0.00 0.00 0.10	$\begin{aligned} &-2184.59808455\\ (\pi_1 \to \pi_2^*, c = -0.51967)\\ &-2184.59297865\\ (\pi_1 \to \pi_2^*, c = -0.47851)\\ &-2184.57627155\\ (\pi_1 \to \pi_2^*, c = -0.62402)\\ &-2184.56989501\\ (\pi_1 \to \pi_2^*, c = -0.81041)\\ &-2184.56908121\\ (\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.46428)\end{aligned}$	$\begin{array}{c} -2184.59026492 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.45384) \\ -2184.58657928 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.40944) \\ -2184.57019047 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.52480) \\ -2184.55840357 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.65376) \\ -2184.56256371 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.46540) \end{array}$	$\begin{array}{c} -2184.56688608\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44241)\\ -2184.56172721\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44333)\\ -2184.48928302\\ (\pi_1, \pi_3 \rightarrow \pi_1^* \ , \ c = -0.42205)\\ -2184.53805303\\ (\pi_1, \pi_1 \rightarrow \pi_1^*, \pi_1^* \ , \ c = -0.65947)\\ -2184.53758146\\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.44586) \end{array}$
0.10 0.25 0.25* 0.25 0.25	0.10 0.20 0.00 0.00 0.10 0.20	$\begin{array}{c} -2184.59808455\\ (\pi_1 \rightarrow \pi_2^*, \ c = -0.51967)\\ -2184.59297865\\ (\pi_1 \rightarrow \pi_2^*, \ c = -0.47851)\\ -2184.57627155\\ (\pi_1 \rightarrow \pi_2^*, \ c = -0.62402)\\ -2184.56989501\\ (\pi_1 \rightarrow \pi_2^*, \ c = -0.81041)\\ -2184.56908121\\ (\pi_1, \pi_1 \rightarrow \pi_1^*, \pi_1^*, \ c = -0.46428)\\ -2184.56489745\end{array}$	$\begin{array}{c} -2184.59026492 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.45384) \\ -2184.58657928 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.40944) \\ -2184.57019047 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.52480) \\ -2184.55840357 \\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.65376) \\ -2184.56256371 \\ (\pi_1 \rightarrow \pi_2^* \ , \ c = 0.46540) \\ -2184.55956086 \end{array}$	$\begin{array}{c} -2184.56688608\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44241)\\ -2184.56172721\\ (\pi_3 \rightarrow \pi_1^* \ , \ c = 0.44333)\\ -2184.48928302\\ (\pi_1, \pi_3 \rightarrow \pi_1^* \ , \ c = -0.42205)\\ -2184.53805303\\ (\pi_1, \pi_1 \rightarrow \pi_1^*, \pi_1^* \ , \ c = -0.65947)\\ -2184.53758146\\ (\pi_2 \rightarrow \pi_2^* \ , \ c = 0.44586)\\ -2184.53305906\end{array}$

* using a different initial guess for the CASSCF reference wave function than in the final calculations

Table S4: Relative energies (eV) of the first six roots of a chlorophyll a model with different level shifts at the SA6-CASSCF(6,6)/XMS-CASPT2 level of theory.

IPEA	Imag.	root 1	root 2	root 3	root 4	root 5	root 6	$ Q_x - Q_y $
0.00	0.00	0.00	0.97	1.70	1.87	2.27	3.29	0.17
0.00	0.20	0.00	1.87	2.05	2.90	3.12	3.71	0.18
0.00^{*}	0.25	0.00	1.54	1.71	2.44	2.81	3.68	0.17
0.10	0.00	0.00	2.20	2.36	2.98	3.39	5.43	0.16
0.10	0.10	0.00	2.19	2.40	3.30	3.51	4.15	0.21
0.10	0.20	0.00	2.24	2.50	3.43	3.61	4.28	0.26
0.25	0.00	0.00	2.58	2.81	3.77	3.93	6.14	0.23
0.25^{*}	0.00	0.00	2.38	2.56	3.46	3.77	4.33	0.19
0.25	0.10	0.00	2.67	2.98	3.96	4.14	4.82	0.31
0.25	0.20	0.00	2.70	3.04	4.07	4.21	4.93	0.34

* using a different initial guess for the CASSCF reference wave function than in the final calculations

IPEA	Imag.	root 1	root 2	root 3
0.050	0.10	-2184.71793960	-2184.64018158	-2184.62653499
		(GS, c = -0.93753)	$(\pi_1 \to \pi_1^*, c = -0.79503)$	$(\pi_1 \to \pi_2^*, c = -0.55267)$
0.050	0.20	-2184.71766209	-2184.63706507	-2184.62067806
		(GS, c = -0.93647)	$(\pi_1 \to \pi_1^*, c = -0.79760)$	$(\pi_1 \to \pi_2^*, c = -0.54207)$
0.075	0.10	-2184.71701182	-2184.63621309	-2184.62216611
		(GS, c = -0.93922)	$(\pi_1 \to \pi_1^*, c = -0.79500)$	$(\pi_1 \to \pi_2^*, c = -0.561300)$
0.075	0.20	-2184.71672682	-2184.63330339	-2184.61663781
		(GS, c = -0.93813)	$(\pi_1 \to \pi_1^*, c = -0.79919)$	$(\pi_1 \rightarrow \pi_2^* \ , c = -0.54851)$
0.090	0.10	-2184.71648245	-2184.63392440	-2184.61966932
		(GS, c = -0.94009)	$(\pi_1 \to \pi_1^*, c = -0.79554)$	$(\pi_1 \to \pi_2^*, c = -0.566230)$
0.100	0.05	-2184.71604283	-2184.63363367	-2184.62223400
		(GS, c = -0.94087)	$(\pi_1 \to \pi_1^*, c = -0.78024)$	$(\pi_1 \to \pi_2^*, c = -0.58293)$
0.100	0.10	-2184.71613840	-2184.63242966	-2184.61804552
		(GS, c = -0.92310)	$(\pi_1 \to \pi_1^*, c = -0.79606)$	$(\pi_2 \to \pi_1^*, c = -0.56940)$
0.110	0.10	-2184.71580053	-2184.63095715	-2184.61645026
		(GS, c = -0.94113)	$(\pi_1 \to \pi_1^*, c = -0.79667)$	$(\pi_1 \to \pi_2^*, c = -0.57247)$
IPEA	Imag.	root 4	root 5	root 6
0.050	0.10	-2184.60477428	-2184.59165420	-2184.56801483
		$(\pi_2 \to \pi_1^*, c = -0.61690)$	$(\pi_3 \to \pi_1^*, c = 0.42687)$	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.37865)$
0.050	0.20	-2184.59748854	-2184.58378493	-2184.56208042
		$(\pi_2 \to \pi_1^*, c = -0.62284)$	$(\pi_3 \to \pi_1^*, c = 0.45322)$	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.38504)$
0.075	0.10	-2184.59998473	-2184.58604449	-2184.56204673
		$(\pi_2 \to \pi_1^*, c = -0.60622)$	$(\pi_3 \to \pi_1^*, c = 0.43109)$	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.37899)$
0.075	0.20	-2184.59304068	-2184.57835227	-2184.55645904
		$(\pi_2 \to \pi_1^*, c = -0.61583)$	$(\pi_3 \to \pi_1^*, c = 0.45417)$	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.38473)$
0.090	0.10	-2184.59722041	-2184.58279321	-2184.55863474
0 100		$(\pi_2 \to \pi_1^*, c = -0.60040)$	$(\pi_3 \to \pi_1^*, c = 0.43301)$	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.37914)$
0.100	0.05	$(\pi_2 \to \pi_1^*, c = -0.60040) \\ -2184.59929752$	$(\pi_3 \to \pi_1^* , c = 0.43301)$ -2184.58536777	$(\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c = 0.37914)$ -2184.55880218
0.100	0.05	$(\pi_2 \to \pi_1^*, c = -0.60040) -2184.59929752 (\pi_2 \to \pi_1^*, c = -0.57222)$	$(\pi_3 \to \pi_1^*, c = 0.43301)$ -2184.58536777 $(\pi_1, \pi_1 \to \pi_1^*, \pi_1^*, c = -0.42101)$	$ \begin{aligned} (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37914) \\ -2184.55880218 \\ (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37552) \end{aligned} $
0.100	0.05 0.10	$(\pi_2 \to \pi_1^*, c = -0.60040) \\ -2184.59929752 \\ (\pi_2 \to \pi_1^*, c = -0.57222) \\ -2184.59541436 $	$(\pi_3 \to \pi_1^* , c = 0.43301) -2184.58536777 (\pi_1, \pi_1 \to \pi_1^*, \pi_1^* , c = -0.42101) -2184.58066644 $	$ \begin{array}{l} (\pi_1,\pi_3\to\pi_1^*,\pi_2^*,c=0.37914) \\ -2184.55880218 \\ (\pi_1,\pi_3\to\pi_1^*,\pi_2^*,c=0.37552) \\ -2184.55641846 \end{array} $
0.100	0.05 0.10	$(\pi_2 \to \pi_1^*, c = -0.60040) -2184.59929752 (\pi_2 \to \pi_1^*, c = -0.57222) -2184.59541436 (\pi_2 \to \pi_1^*, c = -0.59673)$	$(\pi_3 \to \pi_1^* , c = 0.43301) -2184.58536777 (\pi_1, \pi_1 \to \pi_1^*, \pi_1^* , c = -0.42101) -2184.58066644 (\pi_3 \to \pi_1^* , c = 0.43412)$	$\begin{aligned} (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37914) \\ &-2184.55880218 \\ (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37552) \\ &-2184.55641846 \\ (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37922) \end{aligned}$
0.100 0.100 0.110	0.05 0.10 0.10	$(\pi_2 \to \pi_1^*, c = -0.60040) \\ -2184.59929752 \\ (\pi_2 \to \pi_1^*, c = -0.57222) \\ -2184.59541436 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ -2184.59363463 \\ (\pi_2 \to \pi_1^*, c = -0.59673) \\ (\pi_2 \to \pi_1$	$(\pi_3 \to \pi_1^* , c = 0.43301) -2184.58536777 (\pi_1, \pi_1 \to \pi_1^*, \pi_1^* , c = -0.42101) -2184.58066644 (\pi_3 \to \pi_1^* , c = 0.43412) -2184.57856959 (1) (\pi_1, \pi_1, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2$	$\begin{aligned} (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37914) \\ &-2184.55880218 \\ (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37552) \\ &-2184.55641846 \\ (\pi_1, \pi_3 \to \pi_1^*, \pi_2^*, c &= 0.37922) \\ &-2184.55424417 \end{aligned}$

Table S5: Absolute energies (E_h) of the first six roots of a chlorophyll a model with different level shifts at the SA4-CASSCF(6,6)/SA6-CASCI(6,6)/XMS-CASPT2 level of theory.

IPEA	Imag.	root 1	root 2	root 3	root 4	root 5	root 6	$ Q_x - Q_y $
0.050	0.10	0.00	2.12	2.49	3.08	3.44	4.08	0.37
0.050	0.20	0.00	2.19	2.64	3.27	3.64	4.23	0.45
0.075	0.10	0.00	2.20	2.58	3.18	3.56	4.22	0.38
0.075	0.20	0.00	2.27	2.72	3.37	3.77	4.36	0.45
0.090	0.10	0.00	2.25	2.36	3.25	3.64	4.30	0.11
0.100	0.05	0.00	2.24	2.55	3.18	3.56	4.28	0.26
0.100	0.10	0.00	2.28	2.67	3.29	3.67	4.35	0.39
0.110	0.10	0.00	2.31	2.70	3.32	3.73	4.40	0.39

Table S6: Relative energies (eV) of the first six roots of a chlorophyll a model with different level shifts at the SA4-CASSCF(6,6)/SA6-CASCI(6,6)/XMS-CASPT2 level of theory.

3 Optimized Geometries and Coordinate Vectors

Optimized geometries of the ground state, Q_y and Q_x minimum are provided in separate plain-text xyz-files. Coordinate vectors for the non-adiabatic coupling at the Q_y minimum, as well as the five normal modes spanning the investigated 2D spaces are provided in separate plain-text xyz-files. All coordinate vectors are defined as displacements from the Q_y state structure in Angstrom.

4 Energy Levels at Minimum Energy Geometries

Energy levels at the Franck-Condon (FC) point and at the Q_x and Q_y minima were computed at the DFT/MRCI level and are provided in tables S7 and S8. The state ordering is retained upon relaxation from the FC point to either of the excited state minima and the $Q_x - Q_y$ gap remains nearly constant. This indicates that Q_x and Q_y do not cross in an energetically accessible region of space.

Table S7: Absolute energies of S_0 , Q_y and Q_x at their respective minimum energy geometries in $E_{\rm h}$.

geom	S_0	Q_y	Q_x
S_0 -min	-2186.244712	-2186.172303	-2186.163694
Q_y -min	-2186.243441	-2186.174430	-2186.163986
Q_x -min	-2186.243383	-2186.173246	-2186.164254

Table S8: Energy levels of Q_y and Q_x at the Franck-Condon point (FC) and their respective minimum energy geometries. Energies are given in eV, relative to the ground state minimum energy.

geom	S_O	Q_y	Q_x	$ Q_x - Q_y $
S_0 -min	0.00	1.97	2.20	0.23
Q_y -min	0.03	1.91	2.20	0.28
Q_x -min	0.04	1.94	2.19	0.24

5 Potential Energy Surfaces

For the 2D PES spanned by the modes 195/194, 195/198, 195/92 and 195/74 a total of 45 points distributed between -0.2 Å and 0.2 Å have been explicitly calculated. For all four coordinate spaces the Q_y and Q_x PES with the calculated points are visualized in figs. S5 to S8.

(a) Q_y PES.

(b) Q_x PES.

Figure S5: Calculated points (black) for the 2D space spanned by modes 195/194.

Figure S6: Calculated points (black) for the 2D space spanned by modes 195/198.

Figure S7: Calculated points (black) for the 2D space spanned by modes 195/92.

Figure S8: Calculated points (black) for the 2D space spanned by modes 195/74.

6 Non-adiabatic Coupling Matrix Elements

Non-adiabatic coupling matrix elements (NACs) were calculated at the SA4-CASSCF(6,6)/SA6-CASCI(6,6)/ANO-RCC-VDZP level of theory and scaled to the energy difference between CASSCF and XMS-CASPT2 as detailed in the main article. The NACs for coordinate spaces 195/194 and 195/74 are provided in the main article, those for coordinate spaces 195/198 and 195/92 are shown in figs. S9 and S10, respectively.

Figure S9: Visualization of the NACs in the coordinate space spanned by modes 195/198, projected onto the two internal coordinates.

Figure S10: Visualization of the NACs in the coordinate space spanned by modes 195/92, projected onto the two internal coordinates.

7 Transition Dipole Moments

Transition dipole moments for the laser excitation in the coordinate space spanned by modes 195/194 are provided in fig. S11. They were calculated at the SA4-CASSCF(6,6)/SA6-CASCI(6,6)/ANO-RCC-VDZP level of theory as detailed in the main manuscript.

Figure S11: Visualization of the transition dipole moments for the Q_y and Q_x states in the coordinate space spanned by modes 195/194.

8 Quantum Dynamics

The kinetic energy \hat{T}_q in internal coordinates was evaluated in the G-Matrix formalism, where it takes the form: ^{S1-S4}

$$\hat{T}_q \simeq -\frac{1}{2} \sum_{r=1}^M \sum_{s=1}^M \frac{\partial}{\partial q_r} \left[G_{rs} \frac{\partial}{\partial q_s} \right].$$
(1)

The G-matrix G_{rs} is defined via the derivative of the internal coordinates q_r with respect to the Cartesian coordinates x_i :

$$G_{rs} = \sum_{i=1}^{3N} \frac{1}{m_i} \frac{\partial q_r}{\partial x_i} \frac{\partial q_s}{\partial x_i}$$
(2)

In practice, it is often easier to compute

$$G_{rs}^{-1} = \sum_{i=1}^{3N} m_i \frac{\partial x_i}{\partial q_r} \frac{\partial x_i}{\partial q_s}$$
(3)

and subsequently invert the matrix to obtain G_{rs} . As we work with linear coordinate spaces, the G-matrix is constant across each 2D space and its matrix elements are provided in table S9.

Table S9: G-matrix elements for the 2D coordinates spanned by modes 195/198, 195/194, 195/92 and 195/74. G_{11} is the matrix element along mode 195, G_{22} along the respective second mode. G_{12} denotes the kinetic coupling and is numerically zero due to the use of orthogonal coordinates.

modes	G_{11} [a.u.]	G_{12} [a.u.]	G_{22} [a.u.]
195/198	1.3738×10^{-5}	5.3925×10^{-9}	1.3414×10^{-5}
195/194	1.3756×10^{-5}	5.0243×10^{-7}	1.3968×10^{-5}
195/92	1.3758×10^{-5}	5.6629×10^{-7}	1.6214×10^{-5}
195/74	1.3741×10^{-5}	2.2344×10^{-7}	1.6392×10^{-5}

The temporal evolution of the population in the Q_x and Q_y state for the propagation in the 2D coordinate spaces spanned by the modes 195/194, 195/198 and 195/92 respectively are shown in Fig. S12. For the propagation in the 195/92 space a Butterworth filter eliminating all parts of the wave packet below a value of -0.20 Å in y-coordinate was applied.

Figure S12: Temporal evolution of the population for the 2D spaces spanned by a) modes 195/198 and b) modes 195/92.

9 Overlap of Normal Modes with the NAC Vector

This section provides the overlap of each normal mode at the ground state minimum with the non-adiabatic coupling vector (table S10). The modes that contribute the most were used in the construction of a two-dimensional coordinate space for the subsequent non-adiabatic dynamics calculations. The contribution s_i of each normal mode \mathbf{q}_i to the non-adiabatic coupling vector \mathbf{f} was calculated via vector projection in Cartesian coordinates:

$$s_i = \frac{\mathbf{q}_i \cdot \mathbf{f}}{\mathbf{f} \cdot \mathbf{f}}.\tag{4}$$

As the normal modes are orthogonal, the unitless squared quantity s_i^2 provides the percentage of non-adiabatic coupling that is contained in each mode.

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the Q_y geometry. The harmonic vibrational frequency of each mode is also listed for completeness.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2
195	1596.31	0.395261	0.156232
194	1567.54	0.371777	0.138218
198	1642.05	0.289377	0.083739
144	1284.59	0.254025	0.064529
158	1389.16	0.241142	0.058150
159	1407.84	0.209366	0.043834
143	1274.23	0.206716	0.042732
129	1163.25	0.183165	0.033549
171	1479.40	0.177674	0.031568
170	1473.23	0.147845	0.021858
156	1375.95	0.147421	0.021733
130	1171.02	0.143688	0.020646
157	1388.23	0.137688	0.018958
196	1612.00	0.134621	0.018123
109	1015.61	0.131960	0.017413
142	1251.78	0.114548	0.013121
148	1316.13	0.113390	0.012857
197	1632.27	0.108124	0.011691
168	1453.43	0.102603	0.010527
107	975.02	0.098366	0.009676
167	1443.22	0.093672	0.008774

mode	$\nu [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2
183	1512.09	0.088149	0.007770
86	768.60	0.087688	0.007689
160	1412.24	0.086562	0.007493
200	1679.06	0.083435	0.006961
199	1665.30	0.081529	0.006647
184	1517.02	0.081074	0.006573
193	1541.32	0.080083	0.006413
169	1469.07	0.079419	0.006307
147	1309.61	0.073326	0.005377
126	1128.99	0.072992	0.005328
93	821.72	0.063987	0.004094
131	1171.76	0.060780	0.003694
106	967.31	0.060692	0.003684
92	817.26	0.060319	0.003638
176	1506.08	0.060132	0.003616
179	1510.85	0.059703	0.003564
81	736.12	0.059523	0.003543
65	514.48	0.053369	0.002848
104	945.27	0.053319	0.002843
115	1067.45	0.052456	0.002752
66	550.58	0.050035	0.002504
114	1052.15	0.048816	0.002383
85	758.93	0.048680	0.002370
136	1205.68	0.048569	0.002359
172	1483.18	0.048221	0.002325
149	1327.09	0.047823	0.002287
119	1073.88	0.046015	0.002117
70	600.33	0.043579	0.001899
162	1426.47	0.043533	0.001895
154	1362.02	0.041235	0.001700
151	1344.08	0.041018	0.001682
177	1508.48	0.040660	0.001653
150	1330.66	0.038525	0.001484

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2	
238	3216.99	0.038000	0.001444	
89	790.53	0.036637	0.001342	
192	1536.57	0.035906	0.001289	
145	1295.17	0.035465	0.001258	
108	1000.81	0.034960	0.001222	
79	726.75	0.032836	0.001078	
163	1434.89	0.032767	0.001074	
83	747.22	0.032252	0.001040	
112	1037.16	0.031903	0.001018	
182	1511.69	0.031745	0.001008	
103	938.16	0.031409	0.000987	
88	780.80	0.031091	0.000967	
201	1724.85	0.030908	0.000955	
98	877.09	0.028519	0.000813	
125	1122.01	0.028455	0.000810	
87	776.27	0.028060	0.000787	
90	799.80	0.027419	0.000752	
166	1440.52	0.027304	0.000745	
141	1239.42	0.027164	0.000738	
102	930.88	0.026903	0.000724	
117	1067.77	0.024631	0.000607	
153	1352.94	0.024304	0.000591	
51	354.26	0.023864	0.000569	
124	1102.90	0.023120	0.000535	
63	495.99	0.022964	0.000527	
137	1216.68	0.022411	0.000502	
67	573.82	0.021934	0.000481	
84	748.71	0.020901	0.000437	
128	1151.68	0.020772	0.000431	
120	1076.17	0.020704	0.000429	
73	656.42	0.020592	0.000424	
122	1089.97	0.019891	0.000396	
164	1435.13	0.019524	0.000381	

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2	
116	1067.72	0.019396	0.000376	
82	743.04	0.018082	0.000327	
26	153.77	0.017892	0.000320	
185	1517.77	0.017857	0.000319	
77	709.00	0.017749	0.000315	
113	1045.88	0.017615	0.000310	
202	1819.11	0.017384	0.000302	
155	1369.07	0.017331	0.000300	
205	3047.90	0.017107	0.000293	
161	1418.53	0.017087	0.000292	
101	893.33	0.016348	0.000267	
57	416.05	0.016237	0.000264	
239	3234.13	0.015979	0.000255	
146	1299.72	0.015796	0.000250	
64	502.06	0.014788	0.000219	
78	724.29	0.014259	0.000203	
110	1026.60	0.014196	0.000202	
72	644.45	0.013465	0.000181	
52	361.24	0.013177	0.000174	
121	1085.42	0.012946	0.000168	
118	1069.02	0.012348	0.000152	
61	471.33	0.012269	0.000151	
186	1519.94	0.012210	0.000149	
95	847.20	0.011552	0.000133	
203	1824.07	0.011290	0.000127	
58	435.23	0.010897	0.000119	
187	1520.17	0.010124	0.000103	
18	117.29	0.009427	0.000089	
237	3201.40	0.008973	0.000081	
28	172.89	0.008962	0.000080	
37	226.83	0.008161	0.000067	
76	691.34	0.008095	0.000066	
80	734.75	0.007934	0.000063	

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2	
174	1497.48	0.007799	0.000061	
105	956.83	0.007753	0.000060	
152	1350.02	0.007565	0.000057	
211	3063.75	0.007490	0.000056	
97	859.20	0.007399	0.000055	
74	669.01	0.007180	0.000052	
60	450.39	0.006990	0.000049	
165	1438.01	0.006962	0.000048	
29	176.90	0.006477	0.000042	
230	3153.57	0.006055	0.000037	
48	308.00	0.005988	0.000036	
49	317.90	0.005984	0.000036	
50	323.46	0.005961	0.000036	
39	240.40	0.005895	0.000035	
33	203.05	0.005892	0.000035	
231	3153.82	0.005864	0.000034	
47	302.05	0.005775	0.000033	
181	1511.40	0.005749	0.000033	
189	1522.77	0.005671	0.000032	
34	209.59	0.005434	0.000030	
45	291.76	0.005337	0.000028	
111	1032.24	0.005332	0.000028	
55	385.18	0.005211	0.000027	
32	196.32	0.005169	0.000027	
127	1142.25	0.005139	0.000026	
132	1181.27	0.004994	0.000025	
46	297.38	0.004984	0.000025	
139	1230.91	0.004878	0.000024	
100	892.35	0.004773	0.000023	
75	684.16	0.004680	0.000022	
207	3056.11	0.004534	0.000021	
20	125.49	0.004389	0.000019	
31	194.28	0.004382	0.000019	

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2	
43	275.05	0.004371	0.000019	
173	1495.11	0.004152	0.000017	
135	1199.31	0.003888	0.000015	
99	889.41	0.003637	0.000013	
9	57.33	0.003580	0.000013	
225	3132.20	0.003167	0.000010	
42	265.00	0.003027	0.000009	
25	148.22	0.003004	0.000009	
188	1522.19	0.002993	0.000009	
91	804.02	0.002884	0.000008	
36	217.95	0.002853	0.000008	
190	1523.41	0.002838	0.000008	
54	378.80	0.002782	0.000008	
35	212.05	0.002735	0.000007	
56	388.37	0.002679	0.000007	
138	1227.93	0.002644	0.000007	
68	586.51	0.002633	0.000007	
210	3059.79	0.002601	0.000007	
17	108.15	0.002587	0.000007	
175	1498.66	0.002517	0.000006	
40	251.27	0.002516	0.000006	
11	65.60	0.002411	0.000006	
23	136.82	0.002291	0.000005	
234	3167.21	0.002232	0.000005	
96	858.22	0.002199	0.000005	
140	1231.01	0.002195	0.000005	
71	634.14	0.002177	0.000005	
38	236.85	0.002024	0.000004	
180	1510.92	0.002006	0.000004	
3	21.39	0.001960	0.000004	
227	3141.58	0.001906	0.000004	
204	1849.67	0.001828	0.000003	
1	12.57	0.001780	0.000003	

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

mode	$\nu \ [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2	
240	3249.15	0.001719	0.000003	
2	17.76	0.001692	0.000003	
30	178.85	0.001635	0.000003	
228	3143.18	0.001633	0.000003	
5	29.11	0.001599	0.000003	
19	119.96	0.001571	0.000002	
41	256.29	0.001534	0.000002	
226	3134.71	0.001337	0.000002	
22	135.87	0.001308	0.000002	
53	375.56	0.001219	0.000001	
44	285.49	0.001138	0.000001	
212	3074.03	0.001135	0.000001	
134	1197.08	0.001103	0.000001	
12	70.40	0.001088	0.000001	
10	59.49	0.001038	0.000001	
123	1099.51	0.001034	0.000001	
8	49.73	0.001026	0.000001	
223	3127.08	0.001018	0.000001	
221	3107.98	0.000988	0.000001	
208	3057.40	0.000896	0.000001	
220	3103.89	0.000875	0.000001	
178	1510.33	0.000762	0.000001	
7	47.43	0.000735	0.000001	
209	3058.09	0.000732	0.000001	
62	485.74	0.000715	0.000001	
191	1525.14	0.000664	0.000000	
14	84.68	0.000623	0.000000	
215	3085.05	0.000617	0.000000	
216	3093.37	0.000615	0.000000	
133	1195.89	0.000583	0.000000	
24	145.01	0.000561	0.000000	
217	3095.41	0.000516	0.000000	
59	437.65	0.000430	0.000000	

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

	- 1-		
mode	$\nu [\mathrm{cm}^{-1}]$	overlap s_i	squared overlap s_i^2
21	129.69	0.000421	0.000000
218	3095.64	0.000400	0.000000
27	156.96	0.000395	0.000000
94	836.91	0.000394	0.000000
16	100.60	0.000335	0.000000
229	3149.82	0.000334	0.000000
15	93.62	0.000284	0.000000
4	24.66	0.000263	0.000000
222	3125.48	0.000249	0.000000
214	3083.89	0.000239	0.000000
224	3130.92	0.000201	0.000000
236	3197.26	0.000201	0.000000
219	3099.60	0.000144	0.000000
69	589.84	0.000124	0.000000
233	3160.83	0.000079	0.000000
13	80.48	0.000075	0.000000
213	3074.94	0.000051	0.000000
235	3193.25	0.000049	0.000000
206	3050.51	0.000022	0.000000
232	3158.14	0.000015	0.000000
6	40.81	0.000004	0.000000

Table S10: Overlap of normal modes with the non-adiabatic coupling vector at the ground state minimum.

10 Sample OpenMolcas Input

A sample input for a CASPT2 calculation with OpenMolcas, ^{S5,S6} as used in the evaluation of energies and non-adiabatic coupling elements for the potential energy surfaces in this work, is provided in listing 1.

```
1 >>> export MOLCAS_MEM=40000
2 >>> export MOLCAS_MOLDEN=OFF
3
4 >>> COPY $HOMEDIR/template.JobIph JOBOLD
5
6 &GATEWAY
    TITLE= title
7
     COORD= geom.xyz
8
     BASIS= ANO-RCC-VDZP
9
     GROUP= NOSYM
10
     RICD
11
12
13 &SEWARD
     DoAnalytical
14
15
16 &RASSCF
     JOBIph
17
     CIRESTART
18
     EXPERT
19
     SPIN= 1
20
     RASSCF= 0 0
21
     NACTEL= 6
22
     INACTIVE= 163
23
     RAS2 = 6
24
     CIR00T= 4 4 1
25
    MAXORB
26
27
     0
28
29 >>> COPY $Project.JobIph $HOMEDIR/root4.JobIph
30
  &GRID_IT
31
   SPARSE
32
   SELECT
33
   1:154-179
34
35
   &RASSCF
36
     FILEorb = $HOMEDIR/$Project.RasOrb
37
     EXPERT
38
```

```
SPIN= 1
39
     RASSCF= 0 0
40
     NACTEL= 6
41
     INACTIVE= 163
42
     RAS2 = 6
43
     CIR00T= 6 6 1
44
     CIONly
45
    MAXORB
46
     0
47
48
49 >>> COPY $Project.JobIph $HOMEDIR/root6.JobIph
50
51 &ALASKA
   NAC= 2 3
52
53
54 &CASPT2
     IPEAshift= 0.1
55
    IMAGinary= 0.1
56
    MAXIter= 500
57
    XMULTistate= ALL
58
59
60 >>> COPY $Project.JobMix $HOMEDIR/$Project.JobMix
61
62 &RASSI
     HEFF
63
     CIPR
64
    TRDI
65
```

Listing 1: Sample OpenMolcas input for a SA4-CASSCF(6,6)/SA6-CASCI(6,6)/XMS-CASPT2 calculation, including non-adiabatic couplings and transition dipole moments.

References

- (S1) Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; Dover Publications, 1980.
- (S2) Schaad, L. J.; Hu, J. The Schrödinger Equation in Generalized Coordinates. J. Mol. Struct.: THEOCHEM 1989, 185, 203–215.
- (S3) Stare, J.; Balint-Kurti, G. G. Fourier Grid Hamiltonian Method for Solving the Vibrational Schrödinger Equation in Internal Coordinates: Theory and Test Applications. J. Phys. Chem. A 2003, 107, 7204–7214.
- (S4) Kowalewski, M.; Mikosch, J.; Wester, R.; de Vivie-Riedle, R. Nucleophilic Substitution Dynamics: Comparing Wave Packet Calculations with Experiment. J. Phys. Chem. A 2014, 118, 4661–4669.
- (S5) Fdez. Galván, I.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J. J.; Bokarev, S. I.; Bogdanov, N. A.; Carlson, R. K.; Chibotaru, L. F.; Creutzberg, J.; Dattani, N.; Delcey, M. G.; Dong, S. S.; Dreuw, A.; Freitag, L.; Frutos, L. M.; Gagliardi, L.; Gendron, F.; Giussani, A.; González, L.; Grell, G.; Guo, M.; Hoyer, C. E.; Johansson, M.; Keller, S.; Knecht, S.; Kovačević, G.; Källman, E.; Li Manni, G.; Lundberg, M.; Ma, Y.; Mai, S.; Malhado, J. a. P.; Malmqvist, P. A. k.; Marquetand, P.; Mewes, S. A.; Norell, J.; Olivucci, M.; Oppel, M.; Phung, Q. M.; Pierloot, K.; Plasser, F.; Reiher, M.; Sand, A. M.; Schapiro, I.; Sharma, P.; Stein, C. J.; Sø rensen, L. K.; Truhlar, D. G.; Ugandi, M.; Ungur, L.; Valentini, A.; Vancoillie, S.; Veryazov, V.; Weser, O.; Wesoł owski, T. A.; Widmark, P.-O.; Wouters, S.; Zech, A.; Zobel, J. P.; Lindh, R. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964.
- (S6) Aquilante, F.; Autschbach, J.; Baiardi, A.; Battaglia, S.; Borin, V. A.; Chibotaru, L. F.; Conti, I.; De Vico, L.; Delcey, M.; Fdez. Galván, I.; Ferré, N.; Freitag, L.; Garavelli, M.; Gong, X.; Knecht, S.; Larsson, E. D.; Lindh, R.; Lundberg, M.; Malmqvist, P. A. k.; Nenov, A.; Norell, J.; Odelius, M.; Olivucci, M.; Pedersen, T. B.; Pedraza-González, L.; Phung, Q. M.; Pierloot, K.; Reiher, M.; Schapiro, I.; Segarra-Martí, J.; Segatta, F.; Seijo, L.; Sen, S.; Sergentu, D.-C.; Stein, C. J.; Ungur, L.; Vacher, M.; Valentini, A.; Veryazov, V. Modern Quantum Chemistry with [Open]Molcas. J. Chem. Phys. 2020, 152, 214117.