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1 Model Selection

Table S1: Influence of the model depth on the mean absolute error (MAE) on the validation set for the
basic GCNN model for the test systems benzene in water and uracil in water. For each property, the
model with the lowest MAE is marked in bold.

Benzene
∆−learning

Depth E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

2 1.7 20.7 4.0
4 1.2 21.0 3.6
6 1.0 22.9 3.5
8 1.0 24.6 3.4
Uracil

∆−learning
Depth E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

2 1.6 49.5 1.2
4 2.0 55.5 1.2
6 2.2 60.2 1.3
8 32.6 62.7 1.3

Table S2: Influence of the number of features (nf ) on the mean absolute error (MAE) on the validation
set for the basic GCNN model for the test systems benzene in water and uracil in water. For each property,
the model with the lowest MAE is marked in bold.

Benzene
∆−learning

nf E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

32 1.7 22.1 4.2
64 1.3 21.5 3.9
128 1.0 22.9 3.5
256 0.9 22.9 3.1
Uracil

∆−learning
nf E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

32 2.5 54.3 1.2
64 1.9 53.5 1.3
128 2.2 60.2 1.3
256 2.5 60.8 1.3
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2 Force Loss Contribution
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Figure S1: Influence of relative weights (wFQM and wFMM ) for the different loss terms (QM forces,
MM forces) on the mean absolute error (MA of the energy (left), forces on QM particles (middle), and
forces on the MM particles from the QM zone (right). The ∆-learning GCNN was used with the test
system benzene in water. The weight of the energy loss (wE) was kept constant at 1.0. (Top): MAE for
the training set. (Bottom): MAE for the validation set. The color map and the relative size of the points
indicate the MAE.
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Figure S2: Learning curves for FQM in the training set (top) and validation set (bottom) when varying
the relative loss weightings wFQM (left) and wFMM (right). The ∆-learning GCNN was used with the
test system benzene in water. The weight of the energy loss (wE) was kept constant at 1.0.
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3 Neighborhood Reduction

Table S3: Influence of the neighborhood reduction schemes on the mean absolute error (MAE) on the
validation set for the ∆-learning GCNN model with the test systems benzene in water and uracil in water.
For each property, the model with the lowest MAE is marked in bold.

Benzene
∆−learning

Scheme E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

Complete 0.7 17.0 1.8
KNN-8 2.2 28.4 5.1
KNN-12 1.5 26.3 4.3
Voronoi 2.1 34.8 3.1
Uracil

∆−learning
Scheme E FQM FMM

kJ mol−1 kJ mol−1 nm−1 kJ mol−1 nm−1

Complete 1.6 52.8 0.8
KNN-8 2.6 60.8 1.0
KNN-12 2.0 57.6 1.0
Voronoi 3.1 73.9 0.9

3.1 Data Set Ordering

For the farthest-point-sampling (fps), we used a simple fingerprint together with a hash function. For each
frame from the training set, we calculated all atom-atom distances (rij) rounded to 0.001 nm and stored
these together with the corresponding atom types as [Zi, Zj , rij ]. Next, we hashed these objects to 64 bit
and counted the occurrence of each bit within the hash of each frame. Finally, we compared the resulting
bit counts of different frames using the Jaccard/Tanimoto index [1, 2],

T =

∑
k Ck∑

k(Uk − Ck)
(1)

where Ck is the intersection of the counts at bit k between two frames and Uk is the union of the counts
at bit k between two frames.

The fps-ordering was initialized at the first MD frame. At each step, the frame with the least summed
similarity to all already chosen frames was added to the fps-ordered set until all training frames were
contained.
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Figure S3: Learning curves for the training set (top) and validation set (bottom) when varying the order
of the data points in the training set. The ∆-learning GCNN for benzene in water is shown.
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