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S1 GAPs for Reactions

We found that our initial GAP training strategy,[1] for developing an accurate reactive potential for

the SN2 reaction Cl− +CH3Cl was not easily translated to the higher-dimensional ethene+butadiene

Diels-Alder case (MAD (R1) = 0.23 eV / 5.3 kcal mol−1, Figure S1a). However, for a similarly

complex H-abstraction reaction the obtained error is closer to the target 1 kcal mol−1 (MAD = 0.09

eV, 2.1 kcal mol−1) level of accuracy (Figure S1b). Note that these results are consistent within

repeats of the partially random active learning (AL) strategy and minor hyperparameter tweaks.

‡

‡

a

b

MAD = 0.23 eV

MAD = 0.09 eV

Figure S1: Comparison of predicted and true energies over a GAP-MD propagated trajectories using initial

velocities suitable for 300 K and a Langevin thermostat (300 K) with a 0.5 fs time step. ‘True’ energies

calculated at PBE0-D3BJ/def2-SVP in ORCA. GAPs trained using active learning (AL) and the same

hyperparameters in ref. [1] at 500 K. AL used a ET = 2 × 10−5 eV atom−1 threshold on the maximum

Gaussian process variance to select new configurations within a 1 ps window. Final datasets contained 217

and 223 configurations for ethene + butadiene (a) and methyl + propane (b), respectively.
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S2 Hyperparameter Optimisation

Starting from the hyperparameters shown in Table S1, which are based on our previous work[1],

we optimised these hyperparameters as outlined in this section.

Type Parameter Description Value

GAP σE Expected error in energies 0.316 meV atom−1

σF Expected error in force
components

0.1 eV Å−1

ζ Power the kernel is raised
to, increasing the

dissimilarity between
environments (ζ > 1)

4

nsparse Number of atomic
environments above
which selection is

performed

500

sparse method Method to select the
maximumly diverse set of

configurations

CUR points

SOAP descriptors σSOAP
at Spread of the Gaussian

added to each nuclear
coordinate

0.5 Å

nmax, lmax Expansion order in the
radial (n) and angular (l)

basis

6

rcut Cut-off distance in the
short range descriptor

4.0 Å

Table S1: Default parameter set for GAPs and SOAP descriptors. SOAP neighbour densities include all

unique pairs.

S2.1 QM Convergence

Using ORCA v. 4.2.1 the default SCF and DFT integration grids provide essentially converged

forces (Figure S2) thus the defaults are used throughout. The error introduced is negligible com-

pared to the ‘expected error’ in the forces used in the GAP fitting (σF = 0.1 eV Å−1 by default),

thus default ORCA parameters will be used herein.

S2.2 Expansion Order

Increasing the expansion order of the SOAP provides an improved approximation to the overlap

between two atomic densities in the (dot product SOAP) kernel. Therefore, the energies and forces

should be converged with respect to nmax and lmax, being aware of the increased computational

cost of the SOAP computation. A slightly larger order of 8 in both lmax and nmax provides the
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a b

Figure S2: Convergence of the force components of 10 randomly selected frames from an active learning

instance from the TS of ethene+butadiene at the PBE/def2-SVP level of theory in ORCA. Convergence of

the mean absolute deviation in forcers for the SCF energy change (Etol) convergence (a) and DFT integration

grid (b) is with respect to their maximum values in ORCA (10−10 Ha and 7 respectively). The maximum

MAD is 10× less than the default GAP σF .

optimum value, requiring a third of the training data to achieve a chemically accurate potential for

propane (Figure S3). Similar results are obtained for pentane over a smaller nmax, lmax window,

albeit without the exponential decay observed in Figure S3. As found in other works (e.g. ref. [2]),

accuracy converges faster with respect to lmax than nmax (Figure S4b). Interestingly, decreasing

the radial expansion order seems to reduce inhibit training slightly (nmax = lmax = 8 in Figure S4a

cf.nmax = 8, lmax = 4 in Figure S4b).
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Figure S3: Number of reference evaluations (neval) and number of training configurations (ntrain) required

to propagate 10 × 1 ps GAP-MD at 500 K without finding a prediction with an error > 1 kcal mol−1 from

the true GFN2-XTB reference at a particular order of radial and angular SOAP expansion (nmax, lmax) for

propane. Other hyperparameters as Table S1.

a b

Figure S4: As Figure S3 for pentane with (a) nmax = lmax and (b) nmax = 2lmax .
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S2.3 Expected Errors

Using nmax = lmax = 8 and optimising the ‘expected errors’ in the energy and forces in training a

gas-phase GAP for propane, increasing the ‘smoothness’ (larger σE) is not beneficial to the active

learning rate (Figure S5). Instead, fitting energies and forces more strongly (top right, Figure S5)

enables only 75 training configurations required for an accurate propane potential.a Repeating the

same along a slice in the (σE , σF ) space suggests that this result it not limited to just small systems

(Figure S6), no the choice of expansion order.

Figure S5: Number of evaluations required to generate a chemically accurate GAP (as Figure S3) for

propane as a function of σE and σF . Values are averages over three independent repeats.

a b

Figure S6: As Figure S5 for pentane along a slice of the 2D space with (a) nmax = lmax = 8, (b)

nmax = 12, lmax = 6.

aNote that visualisation of a short 1 ps MD trajectory at 500 K suggests the potential is reasonable and is not
circumventing the τacc error metric.

S6



SI: Reaction Dynamics of Diels-Alder Reactions from Machine Learned Potentials

Here, it is important to emphasize that the pentane potential trained using 500 K active learning

at the GFN2-XTB level with the strongest fitting (σE = 10−4 eV atom−1, σF = 10−2 eV Å−1,

bottom right Figure S6) is highly accurate over ‘long-time’ dynamics (Figure S7).

MAD = 0.01 eV

Figure S7: GAP-MD dynamics at 300 K (dt = 0.5 fs, 50 Å cubic box equivalent to a vacuum) compared

to GFN2-XTB ground truth. σE = 10−4 eV atom−1, σF = 10−2 eV Å−1, 500 K active learning.
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S2.4 Sparse Points

Previous studies have shown that GAP accuracy can converge exponentially with the number of

atomic environments (‘sparse points’).[2]. Of course this will be system dependent, thus the scaling

is evaluated for alkanes with 3, 4 and 5 carbons (Figure S8). For these systems all GAPs are

converged with respect to nsparse at 800 points. For pentane a substantial drop in the number

of required evaluations is observed after 400 configurations, suggesting for ‘large’ systems (> 15

atoms) nsparse closer to 1000 is more suitable.
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log10(nsparse)
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Figure S8: Convergence of the number of evaluations required to generate a potential as Figure S3 for

linear alkanes as a function of the sparse points. Error bars are standard errors of the mean over three

independent repeats.

S2.5 Summary

Based on these data, we suggest using the updated hyperparameters shown in Table S2 for small

molecules in the gas phase. These updated hyperparameters are the ones used for GAP in the main

text and herein.

Type Parameter Value

GAP σE 0.1 meV atom−1

σF 0.01 eV Å−1

SOAP descriptors nmax/2, lmax 6

nsparse 1000

Table S2: Updated hyperparameters parameter set for GAPs and SOAP descriptors, all other hyperpa-

rameters as Table S1.
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S3 Ethene + Butadiene

S3.1 Sampling Methodology

We have shown previously that the AL sampling method (e.g. DFT functional) is important

in obtaining accurate uplifted GAPs,1 where the energy/forces of generated configurations are

recalculated at a higher level. For the [4+2] Diels-Alder reaction between ethene and butadiene,

sampling using a cheaper method than PBE does not seem to be suitable over the intrinsic reaction

coordinate (IRC, Figure S9a). Although the thermodynamics at PBE are closer to the reference

MP2 values, kinetics at PBE0 are slightly closer (Figure S9b). Sampling is therefore performed

with the more transferable PBE0 functional.

a b

r1

r2

Figure S9: Intrinsic reaction coordinates for ethene+butadiene [4+2] cyclisation at different levels of theory.

DFT use def2-SVP basis sets, MP2 a def2-TZVP basis and XTB//PBE0 corresponds to GNF2-XTB energies

on PBE0 IRC geometries. All TSs are confirmed as such by the presence of a single imaginary mode.

Instead of using the difference between reference and predicted energies as the criteria for adding

new configurations in the AL loop the GP variance may also be used.[1] For this system, using a

threshold around 2 × 10−5 eV atom−1 samples in a similar region of the energy space as using a

0.09 eV (2 kcal mol−1) difference threshold (Figure S10), but at a much lower computational cost.b

Therefore, a ‘gp var’ sampling strategy will be used for maximum training efficiency.

bUsing a ‘diff’ strategy requires evaluating |E0 −EGAP| at intermediate points in the GAP-MD trajectory, which
are avoided using ‘gp var’.
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Figure S10: Normalised probability density function over the energies sampled using AL from the

ethene+butadiene [4+2] TS. gp var = x corresponds to running GAP-MD at 500 K until the predicted

variance is above x eV for the whole system. diff = y eV corresponds to running GAP-MD at 500 K until

|E0 = EGAP| > y.
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S3.2 Conformational Rearrangement

Upon cyclisation, the formed cyclohexene molecule undergoes conformational rearrangement to

the more stable (and > 99% populated) chair conformer. While often assumed to be fast, in

cyclohexane solution the interconversion at room temperature only occurs at a rate of 55 s−1.[3]

An MM forcefield (GAFF) affords rapid interconversion between the conformers, while the GAP

(trained at 1200 K on cyclohexene) interconverts more slowly (Figure S11). The MM however

does afford the qualitatively correct distribution (Figure S12), with the half-chair favoured over the

half-boat. Developing potentials which allow for conformational changes without reparametrisation

is necessary if accurate long-time simulations are to be possible.

ϕ

Figure S11: Sample trajectories of cyclohexene at 900 K (0.5 fs timestep) using GAFF-parametrised (RESP

charges) and GAP-AL generated potentials (latter uplifted from ∼ 500 GFN2-XTB AL configurations to

PBE0 CUR selected to 50%). Shaded areas highlight the approximate regions of the half-chair, boat and

chair conformations of cyclohexene. Plotted using a 5 fs block average.
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Figure S12: Histogram of absolute dihedral angles over 100 trajectories of cyclohexene, as Figure S11.
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S3.3 Fragmentation

With a view to reducing the number of evaluations required to generate a chemically accurate

potential for ethene+butadiene cyclisation we explored an additive approach to obtaining a poten-

tial. Training the intermolecular interaction between components is an effective fragmentation of a

condensed phase molecular[1] or solid state system.[4] Extending this approach to covalent bonds

however did not lead to a gain in accuracy for a specific number of configurations (i.e. τacc∼ 100 fs

cf. τacc∼ 200 fs using the same ‘gp var’ selection strategy).

Fragmentation over a covalent bond in this manner produces two limitations (1) the intra GAP used

to train the fragments may never have encountered the configuration adopted in the full system

and (2) the energy scale over which the inter GAP must be accurate is much larger than without

an I+I decomposition. Specifically for this system, even if the ethene and butadiene potentials are

high quality (τacc > 1 ps, Figure S14) they will not have well sampled the pyramidal sp3 geometrics

present in the cyclohexene product. This increases the amount of data required for the inter GAP

to learn. Furthermore, the intra component distortion is only possible in the product making the

energy scale larger that otherwise required (Figure S10). The one advantage is that the reactant

state (reactants separated by > 3Å) is well approximated by the intra+inter decomposition, as

observed for e.g. bulk water.

Einter = –5.85 eV

‡

Figure S13: Sample intra+inter fragmentation strategy for ethene+butadiene. An example configuration

is highlighted in the bottom panel along with the residual interaction energy between the two fragments (i.e.

true total energy minus EGAP
intra ) for each component.
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Figure S14: Learning curves for ethene and butadiene using a ‘gp var’ selection strategy with Et = 1×10−5

eV atom−1. τacc uses El = 1 kcal mol−1, ET = 10El, 25 fs interval and a maximum time of 1 ps. neval is

the total number of reference PBE0/def2-SVP calculations performed.

S3.4 Reaction Training

Training a GAP for the whole ethene+butadiene reaction with the optimised hyperparameters

(Table S2) from the TS using a ‘gp var’ selection strategy generated a MLP capable of a τacc ∼ 500

fs at 1 kcal mol−1. A representative trajectory back and forwards from the TS illustrates the

achieved accuracy (Figure S15) available in just 30 CPUh.

200 150 100 50 0 50 100 150 200
time / fs

0.0

0.5

1.0

1.5

2.0

2.5

E 
/ e

V

GAP
true

Figure S15: Comparison of true (PBE0/def2-SVP) and GAP predicted energies over one trajectory prop-

agated from the TS to reactants (t < 0) and products (t > 0). GAP trained using ‘gp var’ (Et = 2 × 10−5

eV Å−1, 300 K) and contained 181 configurations.
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S4 Mixing Energy and Force Methods

Prior CCSD(T)-quality GAPs[1] have used computationally demanding numerical gradients.c It

would therefore be beneficial to use a cheaper QM method to evaluate the gradients in combination

with CCSD(T) energies. The following examples are chosed to be of modest computational cost,

and are assumed to be generalisable.

Fx

FyFz

Fx

FyFz

Fx

FyFz

Figure S16: Parity plots of the force components (log density colouring) encountered in a DFTB(3ob) MD

simulation (500 K, δt = 0.5 ps, 1 ps, 10 step print interval) of a gas phase water molecule at a QM method

compared to CCSD(T)/de2-TZVP reference values. Methods: dftb ≡ DFTB(3ob), xtb ≡ GFN2-XTB, pbe

≡ PBE/def2-SVP, PBE0 ≡ PBE0/def2-SVP, mp2 ≡ MP2/def2-TZVP. Dispersion is not expected to alter

the forces.

c3Natoms single points at the minimum and 6Natoms by default in ORCA v. 4.2.1, which uses the central difference
approximation to the numerical gradient.
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Generating frames using a DFTB(3ob) MD simulation and evaluating the force components at

several levels of theory suggests that using hybrid DFT or MP2 forces in combination with CCSD(T)

energies should be sufficient to train a CCSD(T)-quality GAP. The average error is less than or

similar to an ‘expected error’ in the forces that optimises the active learning rate (σF =< 0.1 eV

Å−1, Figure S16).

S4.1 Methane

Training a GAP on CCSD(T) energies and MP2 forces for a gas-phase methane molecule is sufficient

to generate a GAP within 1 kcal mol−1 of the true CC surface. Using active learning at XTB to

sample the configuration space, MP2 forces and CC energies, highly accurate methane dynamics

(Figure S17) can be propagated in just 5 minutes of training time (10 cores).

400 420 440 460 480 500
time / fs

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E 
/ e

V

GAP
true

Figure S17: GAP predicted energies compared to true CCSD(T)/def2-TZVP values for a GAP trained

using GFN2-XTB active learning, MP2/def2-TZVP energy and force evaluations then CCSD(T)/def2-TZVP

single point energies on those configurations. Methane AL at 1000 K, GAP-MD at 500 K with a single frame

printing interval. The shaded region bounds the 1 kcal mol−1 area of accuracy. Hyperparameters as Table

S1.

S4.2 Methanol

Generating a GAP using active learning (AL) in parallel can lead to an overcomplete set of con-

figurations. This is because in the initial stages the independent MD can sample similar regions

of configuration space, which in turn do not provide much information for the fit. Selecting the

most diverse set of configurations is therefore advantageous when the energy and forces are going

to be reevaluated. Training a GAP for methanol using XTB AL then evaluating MP2/def2-TZVP

energies and gradients using different number of CUR5 selected configurations on the SOAP kernel

matrix leads a reasonably stable τacc with the number selected (Table S3).
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Nconfigs τacc / fs

190 1000 ± 0

160 1000 ± 0

130 1000 ± 0

100 1000 ± 0

70 1000 ± 0

40 100 ± 30

Table S3: GAP accuracy on CUR selected configurations generated as Figure S17 for methanol values are

averages over three τacc evaluations and errors in standard error of the mean.

S4.3 Acetic acid

Employing both mixed energy and forces and CUR selection of the configurations allows dynamics

broadly within (MAD = 0.7 kcal mol−1) chemical accuracy to the ground truth CC using only 167

configurations. For comparison this is ∼ 100 times fewer CC calculations than would have been

required using numerical gradients on the whole set of configurations.d
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Figure S18: As Figure S17 for acetic acid using a 50% CUR selection of configurations. Hyperparameters

as Table S1.

d334 configurations × 3 Cartesian coordinates × 2 for central differences × 8 atoms = 16,032 total calculations.
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S5 System Size Scaling

Extending our initial work on a selection of modestly-sized systems and configurational complexity,1

the following section outlines how the number of evaluations required to train a chemically accurate

GAP (over > 1 ps simulation time) scales with system size (hyperparameters shown in Table S1,

standard AL methodology described in ref. [1]).

S5.1 Alkanes

First we consider a semi-optimal case for training larger systems, that of gas phase linear alkanes.

This is because as more CH2 units are added, the ‘bonded’ component of the energy is already

known to the potential, such that only the ‘non-bonded’ components must be learnt.

The number of evaluations required to reach a potential with τacc > 1 ps increases roughly linearly

up to pentane (Figure S19) and reaches a maximum at hexane (> 3000 evaluations).e

While 3000 evaluations is fast at the GFN2-XTB level, sampling using a more accurate DFT method

would exceed the goal of building potentials within a day. Furthermore, alkanes with more than 20

atoms (e.g. 26 in octane) require more than 1000 training configurations (selected using AL). It is

therefore necessary to perform some hyperparameter optimisation.
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Figure S19: Number of reference evaluations (neval) and number of training configurations (ntrain) gener-

ated in 100 active learning loops for a linear alkane chain (500 K, 1 kcal mol−1 AL threshold, GFN2-XTB

reference method). τacc is an average from three simulations, El = 1 kcal mol−1, Et = 10El, T = 300 K,

max(τacc) = 1 ps.

eAs the system becomes larger, the less GAP-MD is run and fewer evaluations required to find a new configuration
with a large enough error to be selected, hence the peak in neval for hexane.
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S5.2 Small Organic Molecules

A selection of solvents and small organic molecules (Figure S20, inc. > 2 elements) forms a diverse

set over which system scaling can be more realistically determined.

Unlike the alkanes, there is no obvious trend in the number of evaluations required to train a

chemically accurate potential. Even correlating against a general complexity metric[6] reveals little

to no correlation aside from a general increase.
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Figure S20: Small molecules used in Figure S21.

S5.3 Atomic Energy Errors

In addition to the complexity increasing with system size, the accuracy per atom increases when

the goal is to generate a potential that is accurate to 1 kcal mol−1 in total energy. To evaluate

if the total (relative) energy is an important quantity for our target properties (free energies or

reaction dynamics) we use the set of SN2 reactions: Cl− + {MeCl, EtCl, nPrCl}.

Generating highly accurate (error ≪ 1 kcal mol−1) GAPs for the reaction is possible (Figure S22).

Using these potentials and increasing the regularisation (‘expected error’) on energies per atom leads

to larger errors on the potential energy barriers (Figure S23). Note that these GAPs are trained

purely on energies, to isolate the effect of adding larger atomic errors. This scenario simulates

training different potentials to the same per atom accuracy, which – as expected – leads to larger
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Figure S21: Number of reference evaluations (neval) and number of training configurations (ntrain) required

to generate a GAP with τacc> 1 ps (parameters as Figure S19) for a variety of small molecules. Values

(averages) and standard errors of the mean are taken over three training repeats with different initial random

displacements.

errors on barriers for these small systems. Based on these data the total energy is an important

quantity in predicting free energy barriers.

a b c

Figure S22: True intrinsic reaction coordinates (IRCs) for Cl− + MeCl, EtCl, nPrCl (a–c respectively),

calculated at PBE0-D3BJ/ma-def2-SVP with GAP predicted values overlaid. GAPs trained at 500 K from

their respective TSs up to a maximum time of 0.5 ps using a ‘gp var’ strategy (Et = 1 × 10−5 eV atom−1.

σE = 10−3.5 eV atom−1, σF = 10−1.5 eV Å−1). The shaded area bounds the 1 kcal mol−1 region of accuracy.
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a b c

d

Figure S23: True and predicted IRCs (training data identical Figure S22) with GAPs trained on energies

only with different σE values for MeCl, EtCl, nPrCl (a–c respectively). Absolute error on the TS energy for

each GAP is plotted in (d).
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S6 Method Comparison

Training different MLP methods on the ethene+butadiene reaction using active learning with a

selection criteria of 0.1 eVf affords highly accurate potentials in all cases (Figure S24, MAD ∼ 0.04

eV, 1 kcal mol−1). The data requirement of the GAP (406 configurations) was significantly higher

than both ACE (114) and NequIP (126) potentials and required significant hyper-parameter tuning

(S2). The total training time on 10 CPU cores was 7, 4 and 14 hours for GAP, ACE and NequIP

potentials respectively, the latter also utilised an Nvidia RTX 2080 GPU.
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Figure S24: Comparison of MLP methods trained using an identical AL strategy from the TS of

ethene+butadiene to ‘ground truth’ AIMD data. Both the training and AIMD used the PBE0/def2-SVP

level of DFT theory. Dynamics propagated from the TS at 300 K using a Berendsen thermostat, as imple-

mented in ORCA v. 4.2.1. Trajectories are stitched from two that proceeded forwards and backwards.

fIf |EMLP − Etrue| > 0.1 eV then the configuration is selected in MLP-driven MD, propagated at 500 K with a
0.5 fs time step. AL is halted if 10 trajectories reach the maximum MD time of 500 fs.
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Evaluating the potentials on the intrinsic reaction coordinate again each perform comparably (Fig-

ure S25), and all provide smooth 2D surfaces (Figure S26). The latter is in spite of the extrapolation

within high-energy regions.

Figure S25: Comparison of MLP methods (as Figure S24) on the PBE0/def2-SVP intrinsic reaction

coordinate (IRC).

GAP ACE NequIP

Training time (hrs) 7 4 14

ntrain 409 114 126

MAD (kcal mol−1) 1.51 0.84 0.55

Table S4: Values of training time (hrs), number of training configurations (ntrain) and mean absolute

deviation, MAD, (kcal mol−1) for R1 for GAP, ACE and NequIP.
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PBE0

r1

r2

GAP

ACE NeQUIP

Figure S26: Comparison of MLP methods (as Figure S24) on the PBE0/def2-SVP 2D relaxed PES.

a
1e-15

b

Figure S27: (a) Interpolated 2D surface (PBE0/def2-SVP 2D relaxed PES, as Figure S26) and (b) residuals

between the interpolated and true values. Interpolation performed with RectBivariateSpline from SciPy.
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S7 Active Learning Selection Strategies

Using the predicted GP variance on a new configuration can be a highly effective selection strategy

for sampling new configurations (see e.g. Figure S14). However, when training other kinds of MLP

there may be no analogue to accelerate the ‘diff’ selection strategy.g Using a threshold on the

maximum distance (‘max dist’) to any of the training set can afford a 10× speed-up in training for

non-GAP MLPs where the reference evaluations dominate the execution time. Specifically, using

a selection criteria defined by,

max(k∗) < kT : k∗ = ((p0 · p∗)ζ , · · · ) (S7.0.1)

where pi is the normalised SOAP vector for the i-th configuration in the training data and ζ is an

positive power to sharpen differences. This is exactly the form of the kernel used in our GAPs and

can provide a quantification of the similarity between one molecular configuration and another.

With an appropriately chosen kT , potentials can be trained efficiently (Figure S28) despite not

being correlated with the absolute energy difference (Figure S29).

Using this strategy it is essential to backtrack until max(k∗) is not too small, to prevent high-energy

structures (or SCF convergence failures) making their way into the training data. We found an

upper threshold of (kT )
2 to be sufficient without much tuning and ζ = 8 to be optimal.

In contrast to R1, direct use of this strategy to train a ACE potential for the DA/cope reactions

between tropone and cycloheptatriene did afford a reasonable potential, but during AL training

there was no sampling of one of the DA product (R2P1).

gUsing |Etrue − EMLP| and evaluating potentially 8 DFT evaluations with no selected configuration, for a 1 ps
max time approaching the end of AL cycle.
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Figure S28: Comparison of true (PBE0/def2-SVP) and predicted (ACE) energies and forces over a 500 fs

ACE-propagated trajectory from the TS (300 K, δt = 0.5 fs). ACE potential trained using a ‘max dist’ AL

strategy (kT = 0.999), which generated 104 configurations.
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Figure S29: Correlation of maximum SOAP kernel vector values with true differences, showing a no

expected negative correlation. Frames selected over a 5000 K active learning trajectory of methane, using

GAP MLP.
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S8 Tropone + cycloheptatriene

Accuracy of the ACE potential trained for the reaction between tropone + cycloheptatriene is

outlined in Figure S30, with τacc> 1 ps from both the ambimodal and Cope TSs (see ref. [7] for a

definition of τacc).
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Figure S30: Accuracy of an ACE potential on ACE-MD dynamics from the ambimodal TS between

tropone + cycloheptatriene. AL initiated from two TSs at 500 K for a maximum time of 1 ps per AL

iteration. Converged training data contains 453 configurations. PBE0/def2-SVP level of theory.
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S9 Methyl vinyl ketone + cyclopentadiene

Accuracy of the ACE potential for reaction Methyl vinyl ketone and cyclopentadiene is shown in

Figure S31 with training from [4+2] DA TS. The time gap is an important property to distinguish

between dynamically concerted and dynamically stepwise mechanisms in Diels-Alder reactions.[8].

When employing ACE potentials to calculate the time gaps, each trajectory initiated from TS was

run until either the cycloadduct was formed (the two forming C-C bond lengths smaller than 1.6

Å), or the reactants were separated (the two forming C–C bond lengths larger than 3.0 Å), with a

maximum simulation time of 500 fs.
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Figure S31: Accuracy of an ACE potential on ACE-MD dynamics from the [4+2] DA TS between Methyl

vinyl ketone and cyclopentadiene. AL initiated from TS at 500 K for a maximum time of 1 ps per AL

iteration. Converged training data contains 71 configurations. PBE0/def2-SVP level of theory.
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a b

Figure S32: Example of an umbrella sampling simulation. 300 K, 0.5 fs time step, 10 ps per window. 20

windows equally spaced in [1.564, 3.5765] Å with k = 10 eV Å−1 and 10 equally spaced over [1.7, 2.3] Å with

k = 20 eV Å−1. (a) Histogrammed reaction coordinate, defined by the average of the two forming bonds,

for each umbrella containing a harmonic bias. (b) Free energy obtained from weighted histogram analysis

(WHAM) unbiasing of the simulation; approximately equal to the potential of mean force (PMF).
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S10 Acetylene + cyclopentadiene

With a view to obtain an accurate ACE potential capable of direct comparison to experimental

enthalpy and entropies of activation we selected the reaction between cyclopentadiene and acetylene,

for which high-quality experimental data is available. Re-analysis of the data in ref. [9] with an

Eyring analysis afforded the experimental activation parameters (Figure S33).

ln k
T

= − ΔH‡

R
⋅ 1

T
+ ln κkB

h
+ ΔS‡

R

y m x + c

∆H‡ = 21.9±0.1 kcal mol-1

∆S‡ = –37.25±0.2 cal K-1 mol-1

Figure S33: Eyring analysis of the rate data in ref. [9]. Rate coefficients in units of atm−1 s−1 thus ln(k/T )

includes an implicit factor of (atm K s). Linear fit performed with scipy.stats.linregress (v. 1.7.1) with the

associated errors in derived quantities quoted as the standard errors.

Training an ACE potential using the default hyperparameters at the PBE0-D3BJ/def2-SVP level

from the [4+2] DA TS generated a highly accurate potential (Figure S34). To enhance the sampling

over the reaction coordinate additional AL training was performed using harmonic biases (k = 10

eV Å−1) in minimums of the reaction coordinate (average of forming bond lengths) histogram

(Figure S35). We found this to be crucial in enabling US at temperatures higher than ∼ 350 K.

Uplifting this potential to CCSD(T)-quality required a benchmark of QM methods with analytic

gradients, as to avoid ∼ 104 CC calculations. Double hybrid (DH) density functionals potentially

offer accuracy above MP2, hence were selected as the target method. Interestingly, for this reaction

there is a considerable spread (∼ 5 kcal mol−1, 0.3 eV) in the barrier and reaction potential

energies compared to the DLPNO-CCSD(T)[TightPNO]/def2-TZVP reference (Figure S36). Only

is the spin-component scaled DH DSD-PBEP86 achieves modestly accurate but underestimates the

barrier by some 3 kcal mol−1. Uplifting the PBE0-D3BJ potential to DSD-PBEP86 was performed

with and without additional AL and the US free energy barriers plotted against temperature to

extract the activation enthalpy and entropy (Figure S37). Umbrella sampling in each case is well

converged with respect to sampling (Figure S38).
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Figure S34: Accuracy of an ACE potential on ACE-MD dynamics from the [4+2] TS between acetylene

+ cyclopentadiene. AL performed at 500 K for a maximum time of 1 ps per AL iteration and ET = 1 kcal

mol−1. Converged training data contains 159 configurations. PBE0/def2-SVP level of theory.

Figure S35: Histogram of r̄ = (r1+r2)/2 for the DA reaction between acetylene + cyclopentadiene sampled

in unbiased AL. Red harmonic potentials represent where additional biased sampling is performed following

the unbiased AL terminating.
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Figure S36: Comparison of QM methods over the B2PLYP/def2-TZVP intrinsic reaction coordinate (IRC)

incremented backwards and forwards from the B2PLYP/def2-TZVP [4+2] TS between acetylene + cyclopen-

tadiene. All methods use the def2-TZVP basis set and resolution of the identity for MP2 and HF components.

ΔG‡ = − TΔS‡ + ΔH‡
y mx + c

∆H‡ = 19.6±2.7 kcal mol-1

∆S‡ = –32.5±8.1 cal K-1 mol-1

Figure S37: Activation free energy as a function of temperature from US simulations (as Figure S38).

Error bars are plotted as the standard error in the mean from three repeat simulations. Free energies are

suitable for a cubic box of side length 10 Å. Correcting to a 1 atm standard state[10]: ∆G◦ = ∆G −
RT ln(V box/V ◦). With V ◦ = 40605 Å3 then ∆S◦ = ∆S + (8.3145 ln(1000/40605)/4.184 cal K−1 mol−1) =

∆S − 7.36 cal K−1 mol−1.
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a b

Figure S38: Example of an umbrella sampling simulation. 450 K, 0.5 fs time step, 10 ps per window. 25

windows equally spaced in [1.539, 5.0] Å with k = 10 eV Å−1 and 10 equally spaced over [1.8, 2.4] Å with

k = 40 eV Å−1. (a) Histogrammed reaction coordinate, defined by the average of the two forming bonds,

for each umbrella containing a harmonic bias. (b) Free energy obtained from weighted histogram analysis

(WHAM) unbiasing of the simulation; approximately equal to the potential of mean force (PMF).
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