Supplementary Information

Inferring Entropy Production Rate from partially observed Langevin dynamics under Coarse-Graining

Aishani Ghosal^a and Gili Bisker^{*,a,b,c,d}

^a Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel

^b Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel

^c Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv 6997801, Israel

^d Center for Light-Matter Interaction, Tel-Aviv University, Tel Aviv 6997801, Israel

*Corresponding author: Gili Bisker Email: <u>bisker@tauex.tau.ac.il</u>

Supplementary Information Text

Simulated trajectories. We simulated Eq. 1 and Eq. 2 for the trajectories of the tip position of the hair bundle (X_1) – the observed variable. The trajectories for different values of the driving parameters (F_{max} , S, and keeping $T_{max} = 1.5 T$) are plotted in *Figure S1*. These trajectories are later used to calculate the EPR bounds (EPR_{WTD}) on the total EPR (EPR_{tot}) and the mean dwell- time asymmetry factor (MDAF) as described in the main manuscript.

Coarse-graining method. We coarse-grain the trajectories of the observed variable (X_1) into 3, 4, 5, 6, and 7 discrete states by spatially dividing the X_1 state space to segments with ratios 1:1:1, $1:\frac{1}{2}:\frac{1}{2}:1$, $1:\frac{1}{3}:\frac{1}{3}:\frac{1}{3}:\frac{1}{3}:1, 1:\frac{1}{4}:\frac{1}{4}:\frac{1}{4}:\frac{1}{4}:\frac{1}{4}:\frac{1}{4}:\frac{1}{5}:\frac{1}{5}:\frac{1}{5}:\frac{1}{5}:\frac{1}{5}:\frac{1}{5}:1$ respectively (as shown in *Figure S2* for *N*=3, 4, 5, 6). The parameters used for the calculations in *Figure S2* are: $F_{max} = 70 \ pN$, $T_{eff} = 1.5T$, and S = 1. This coarse-graining is used for the results presented in Figure 5 and Figure 6 in the main manuscript.

Mean dwell-time asymmetry factor (MDAF). We calculate the total mean dwell-time asymmetry factor using $N^{-1} \sum \langle \tau_{kji} \rangle / \langle \tau_{ijk} \rangle$, where *N* is the total number of coarse-grained states. The values of $\langle \tau_{kji} \rangle / \langle \tau_{ijk} \rangle$) from transitions among different coarse-grained states are plotted in *Figure S3*.

Tightness of the bounds for different parameters: We calculate the tightness of the bounds for unequal coarse-graining (as shown in *Figure S2*) for 7 coarse-grained states (*N*=7) at different driving parameter values, as shown in Table 1.

Method The steady state averages in Eq. 4 of the form $\langle F \circ \frac{dX}{dt} \rangle = \lim_{t \to \infty} \frac{1}{t} \int_0^t dt' F(t') \circ dx(t')$ were calculated using $\langle F \circ \frac{dX}{dt} \rangle \cong \frac{1}{t_{tot}} \sum_{i=1}^n \left(\frac{F(t_i) + F(t_{i-1})}{2} \right) (X(t_i) - X(t_{i-1}))$, where $t_i = i\Delta t$, and $n = t_{tot}/\Delta t$. We have used $\Delta t = 0.1 ms$ and the calculation was performed for a trajectory of length $t_{tot} = 100 s$.

Figure S1

Figure S1. The trajectories of the position of the tip of the hair bundle (X_1) as calculated by solving the coupled differential equations, Eq. 1 and Eq. 2 in the main text for different values of the parameter choices as a function of time. The driving parameter values are written in the subtitles with $T_{eff} = 1.5 T$. All other parameter values are the same as mentioned in Figure 1 in the main text.

Figure S2.

Figure S2. Coarse-graining of the hair bundle tip position (X_1) for parameter values $F_{max} = 70 \text{ pN}$, S = 1, $T_{eff} = 1.5 \text{ T}$. The index numbers on the right side of each panel indicate the number of the coarse-grained states: (A) 3 CG states (1:1:1 division), (B) 4 CG states ($1:\frac{1}{2}:\frac{1}{2}:1$ division) (C) 5 CG states ($1:\frac{1}{3}:\frac{1}{3}:\frac{1}{3}:1$ division) and (D) 6 CG states ($1:\frac{1}{4}:\frac{1}{4$

Figure S3.

Figure S3. The mean dwell-time asymmetry factors (MDAF, $\langle \tau_{kji} \rangle / \langle \tau_{ijk} \rangle$) as a function of the number of coarse-grained states for different transitions (shown in the subtitles) between the coarse-grained states for different parameter values: $F_{max} = 70 \ pN$ (upper panel), $F_{max} = 80 \ pN$ (middle panel), $F_{max} = 90 \ pN$ (lower panel), S = 0.5 (red open circles), S = 1 (blue open square), S = 1.5 (magenta open triangle)), and $T_{eff} = 1.5 \ T$. All other parameter values are the same as mentioned in Figure 1 in the main text.

Table 1

The tightness of the bounds for unequal coarse-graining for 7 coarse-grained states at different driving parameter values

Driving parameter values	EPR _{WTD} /EPR _{tot}
$F_{max} = 70 \ pN, S = 0.5, T_{eff}/T = 1.5$	0.0666
$F_{max} = 70 \ pN, S = 1, T_{eff}/T = 1.5$	0.0024
$F_{max} = 70 \ pN, S = 1.5, T_{eff}/T = 1.5$	0.0018
$F_{max} = 80 \ pN, S = 0.5, T_{eff}/T = 1.5$	0.1244
$F_{max} = 80 \ pN, S = 1, T_{eff}/T = 1.5$	0.0012
$F_{max} = 80 \ pN, S = 1.5, T_{eff}/T = 1.5$	0.0024
$F_{max} = 90 \ pN, S = 0.5, T_{eff}/T = 1.5$	0.0335
$F_{max} = 90 \ pN, S = 1, T_{eff}/T = 1.5$	0.0017
$F_{max} = 90 \ pN, S = 1.5, T_{eff}/T = 1.5$	0.0010