How Change in Chirality Prevents β-Amyloid Type Interaction in a Protonated Cyclic Dipeptide Dimer

Katia Le Barbu-Debus, a) Ariel Pérez-Mellor, a) Valéria Lepère, a) Anne Zehnacker a)*

a) Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France

b) Current affiliation: Department of Physical Chemistry, University of Geneva, 1211 Geneva, Switzerland

* anne.zehnacker-rentien@universite-paris-saclay.fr

Supplementary Information
Figure S1: comparison between the IR absorption spectra simulated at the ri-b97-d-D3BJ/def2-TZVPPD (full lines) and the B3LYPD3BJ/6-311++G(d,p) levels of theory (dotted lines) in the hydride stretch region. a) c-(LD)$_2$H$^+$ Experimental spectrum (black line) Simulated spectra of π-(c-LD)$_2$H$^+$ (red line) b) c-(LL)$_2$H$^+$ Experimental spectrum (black line) Simulated spectra of π-(c-LL)$_2$H$^+$ (red line) and τ-(c-LL)$_2$H$^+$ (blue line)
Figure S2: Most stable structures of the protonated dimers a) (c-LD)$_2$H$^+$ and b) (c-LL)$_2$H$^+$ calculated at the ri-b97-d-D3BJ/def2-TZVPPD level of theory in a solvent continuum. Simulated IR absorption spectra for c) the most stable (c-LD)$_2$H$^+$ structure and d) the most stable (c-LL)$_2$H$^+$ structure. The frequencies are scaled by 0.978.
Figure S3: Most stable structures of the protonated monomer a) (c-LL)H+ and b) (c-LD)H+ calculated at the B3LYP-D3/6311++G(d,p) level of theory.