Electronic supplementary information

Planar Inorganic Five-Membered Heterocycles with $\sigma + \pi$ Dual

Aromaticity in Both S₀ and T₁ States

Xiaojiao Gu,^a Le Yang,^a and Peng Jin*ab

^aSchool of Materials Science and Engineering, Hebei University of Technology,

Tianjin 300130, China

^bKey Laboratory of Special Functional Materials for Ecological Environment and

Information (Hebei University of Technology), Ministry of Education, Tianjin

300130, China

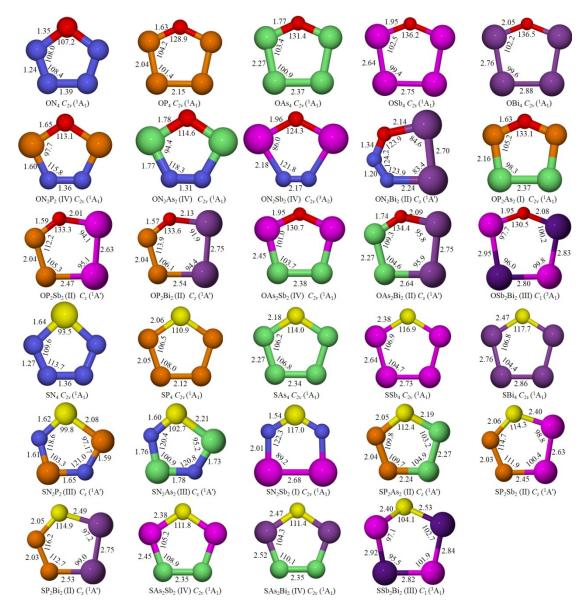

	singlet	triplet
ON ₄	0.0	90.9
OP ₄	0.0	41.3
OAs ₄	0.0	26.2
OSb_4	0.0	9.3
OBi ₄	0.0	1.5
SN_4	0.0	90.5
SP_4	0.0	57.3
SAs ₄	0.0	28.1
SSb_4	0.0	8.8
SBi_4	0.0	0.4

Table S1 Relative energies (kcal/mol) of the XY_4 ring isomers in different spin states at the M06-2X/def2-TZVPPD level of theory.

singlet				triplet				
isomer	Ι	II	III	IV	Ι	II	III	IV
ON ₂ P ₂	71.7	13.6	16.0	0.0	146.2	68.6	148.4	48.7
ON ₂ As ₂	56.2	10.9	19.7	0.0	130.6	34.4	68.7	22.8
ON_2Sb_2	64.0	11.9	31.0	4.2	156.5	148.5	48.8	0.0
ON ₂ Bi ₂	65.6	0.0	45.1	12.0	143.6	7.2	62.0	17.6
OP ₂ As ₂	0.0	3.7	5.9	12.7	37.7	56.6	59.1	62.0
OP_2Sb_2	8.4	0.0	8.4	10.9	42.1	12.8	37.5	20.0
OP ₂ Bi ₂	9.9	0.0	13.0	21.2	41.2	5.5	26.1	179.
OAs ₂ Sb ₂	10.1	3.0	4.3	0.0	55.9	14.2	17.6	34.6
OAs ₂ Bi ₂	6.1	0.0	3.6	6.1	119.0	4.4	15.3	157.0
OSb ₂ Bi ₂	0.1	3.5	3.6	7.7	8.2	197.6	0.0	214.
SN_2P_2	17.9	27.7	0.0	17.9	84.0	37.7	53.5	63.2
SN_2As_2	0.7	4.7	0.0	5.7	70.8	52.2	40.0	30.1
SN_2Sb_2	0.0	11.5	10.1	8.0	19.9	556.8	241.6	8.2
SN_2Bi_2	39.6	12.1 ^a	62.8	45.6 ^a	50.2	0.0 ^a	96.1	14.7
SP ₂ As ₂	0.5	0.0	1.9	2.1	57.4	51.2	36.5	51.3
SP_2Sb_2	6.2	0.0	5.5	2.2	48.8	14.9	35.3	33.9
SP ₂ Bi ₂	8.4	0.0	8.7	4.6	58.6	7.7	55.5	6.9
SAs_2Sb_2	5.5	2.2	2.4	0.0	51.8	40.2	61.2	33.4
SAs ₂ Bi ₂	5.3	1.2	2.5	0.0	146.6	47.8	131.1	4.7
SSb_2Bi_2	5.3	5.2	5.1	5.0	43.5	13.4	0.0	7.9

Table S2 Relative energies (kcal/mol) of the XY_2Z_2 ring isomers in different spin states at the M06-2X/def2-TZVPPD level of theory. Please refer to Scheme 1 of main text for the different isomeric forms (I-IV). The lowest-energy ones for each state are highlighted in bold.

^aring broken after optimization.

Fig. S1 Optimized structures and symmetries of the lowest-energy XY_4 and XY_2Z_2 ring isomers (S₀ or T₀) in Tables S1 and S2 with bond lengths (in Å) and bond angles (in degree). O: red; S: yellow; N: blue; P: orange; As: green; Sb: bright purple; Bi: dark purple.

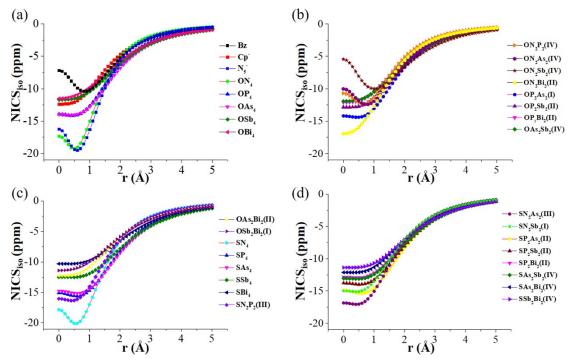


Fig. S2 (a)-(d) NICS_{iso} profiles along the direction perpendicular to the ring plane of the lowest-lying *singlet* state isomers in Tables S1 and S2 (ring center as the origin).

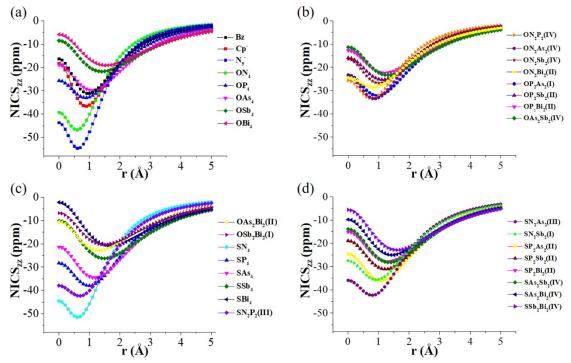
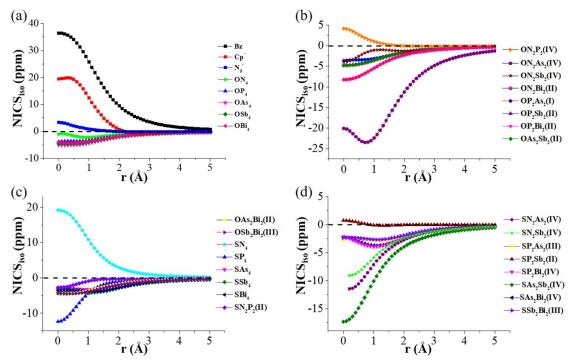
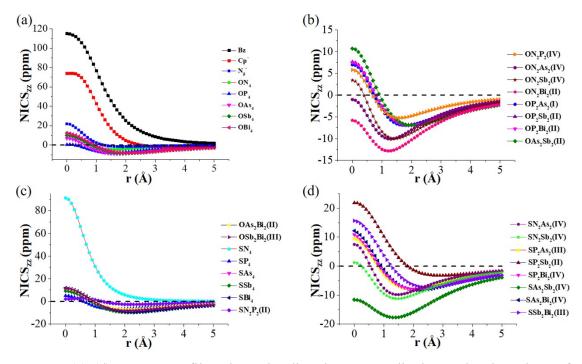




Fig. S3 (a)-(d) NICS_{zz} profiles along the direction perpendicular to the ring plane of the lowest-lying *singlet* state isomers in Tables S1 and S2 (ring center as the origin).


Fig. S4 (a)-(d) NICS_{iso} profiles along the direction perpendicular to the ring plane of the lowest-lying *triplet* state isomers in Tables S1 and S2 (ring center as the origin).

Fig. S5 (a)-(d) NICS_{zz} profiles along the direction perpendicular to the ring plane of the lowest-lying *triplet* state isomers in Tables S1 and S2 (ring center as the origin).

Table S3 Formation energy ($E_{\rm f}$, kcal/mol) and HOMO-LUMO gap energies (eV) of ON₂As₂, ON₂Bi₂ and SAs₂Sb₂ obtained at the M06-2X/def2-TZVPPD level of theory.

		S_0			T			_
_		E_{f}	gap		E_{f}	gap (α)	gap (β)	_
	ON ₂ As ₂	428.3	5.34	_	405.5	5.52	3.75	_
	ON_2Bi_2	341.7	4.84		334.5	5.33	3.80	
_	SAs_2Sb_2	266.6	4.50		233.2	4.03	2.15	

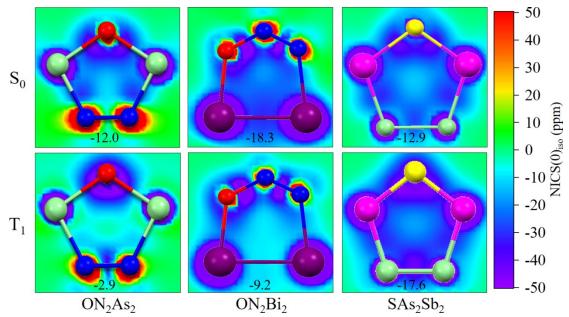


Fig. S6 Calculated molecular planarity parameter (MPP) and span of deviation from plane (SDP) for the ON₂As₂, ON₂Bi₂ and SAs₂Sb₂ in two electronic states.

As documented in the Multiwfn program manual (Verson 3.8 (dev), 2022-Jul-23) and Ref. S1, the author proposed two rigorous metrics of planarity of a molecule: molecular planarity parameter (MPP) and span of deviation from plane (SDP). For a given set of atoms (N_{atom} atoms), MPP is defined as

$$MPP = \sqrt{\frac{\sum_{i} di^2}{N_{atom}}}$$

where d_i is the distance between atom *i* and the plane fitted for the considered atoms. SDP is defined as $d_{\text{max}} - d_{\text{min}}$, where d_{max} and d_{min} denote the most positive and most negative d_i for all considered atoms, respectively. MPP can measure the overall degree of deviation of the atoms from the fitting plane, and SDP exhibits deviation span of the system with respect to the fitting plane. Their zero values thus indicate perfect planarity of the studied system.

Fig. S7 Similar NICS(0) grids as Fig. 6 in main text but obtained at the B3LYP/def2-TZVP level of theory (geometry optimization was done at the same level).

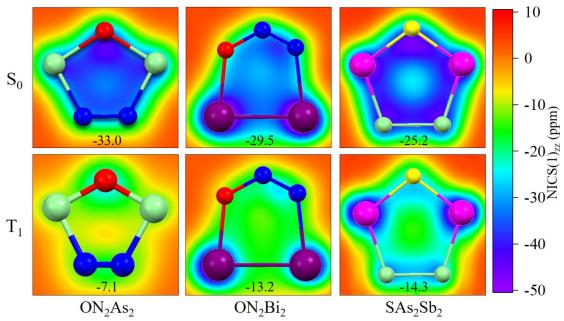


Fig. S8 Similar $NICS(1)_{zz}$ grids as Fig. 7 in main text but obtained at the B3LYP/def2-TZVP level of theory (geometry optimization was done at the same level).

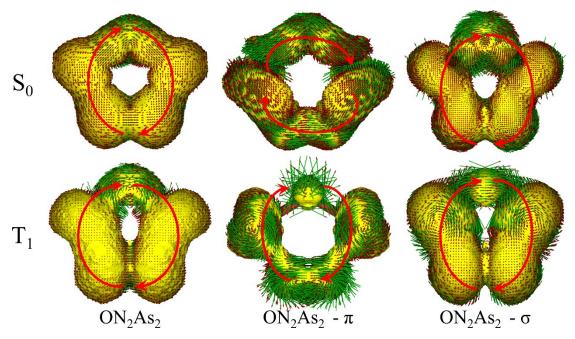
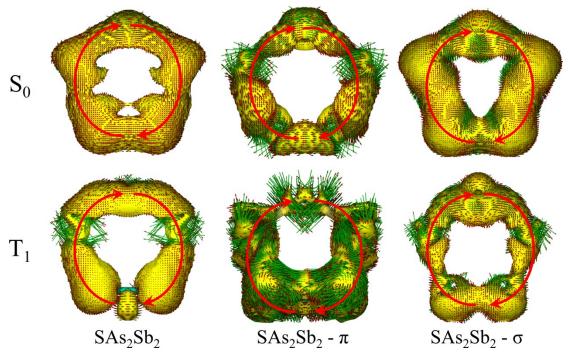



Fig. S9 ACID isosurfaces (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the S_0 and T_1 states (total, π and σ contributions). The magnetic field vector is perpendicular to the ring plane and points upward, and clockwise currents thus mean diatropic. Small green arrows denote current density vectors.

Fig. S10 ACID isosurfaces (isovalue: 0.024 a.u.) of the SAs₂Sb₂ ring in the S₀ and T₁ states (total, π and σ contributions). The magnetic field vector is perpendicular to the ring plane and points upward, and clockwise currents thus mean diatropic. Small green arrows denote current density vectors.

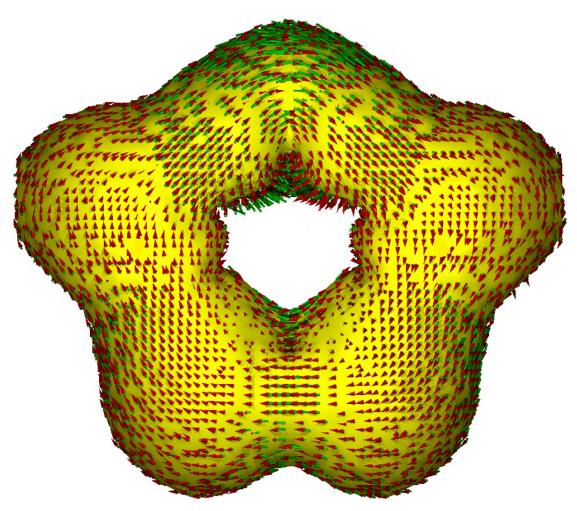


Fig. S11 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the S_0 state (total).

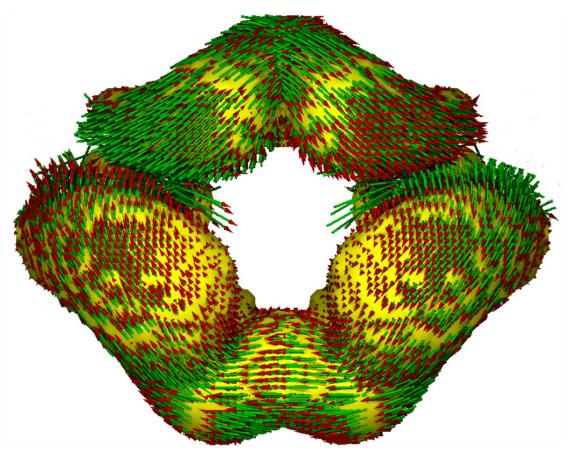
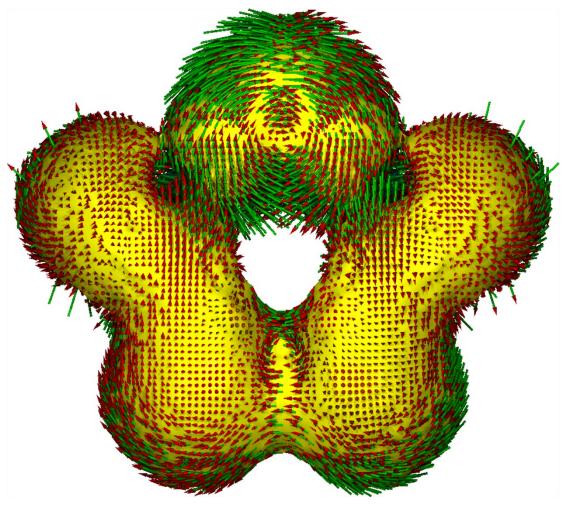



Fig. S12 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the S_0 state (π).

Fig. S13 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the S_0 state (σ).

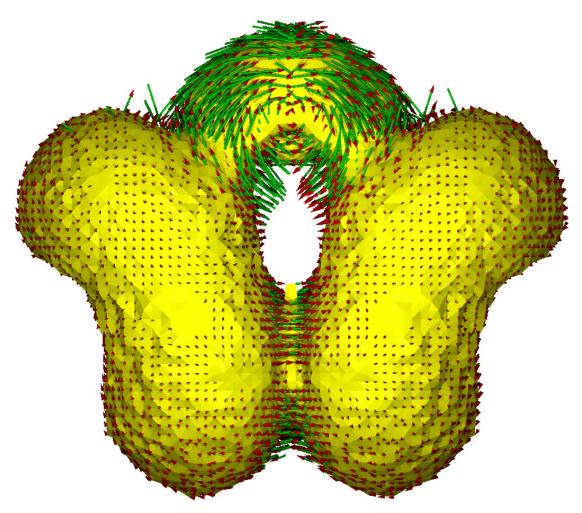
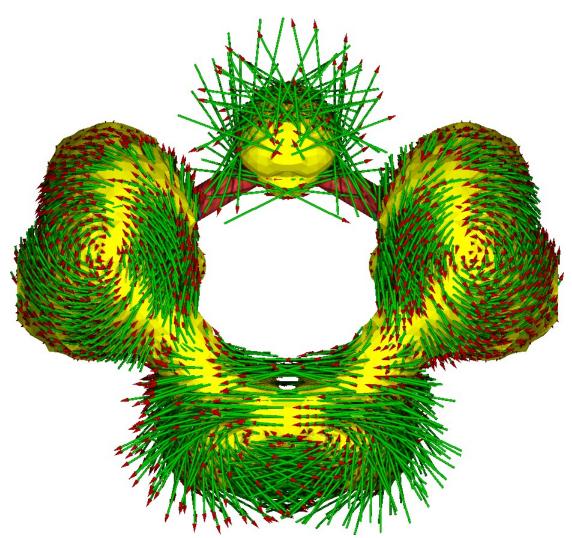
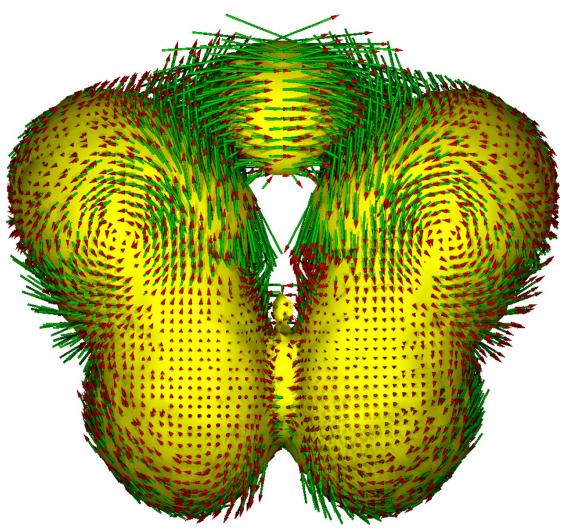




Fig. S14 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the T_1 state (total).

Fig. S15 ACID isosurface (isovalue: 0.024 a.u.) of the ON₂As₂ ring in the T₁ state (π).

Fig. S16 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2As_2 ring in the T_1 state (σ).

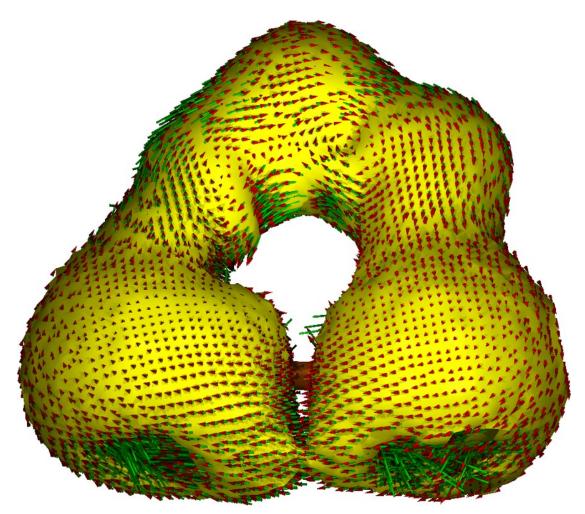


Fig. S17 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2Bi_2 ring in the S_0 state (total).

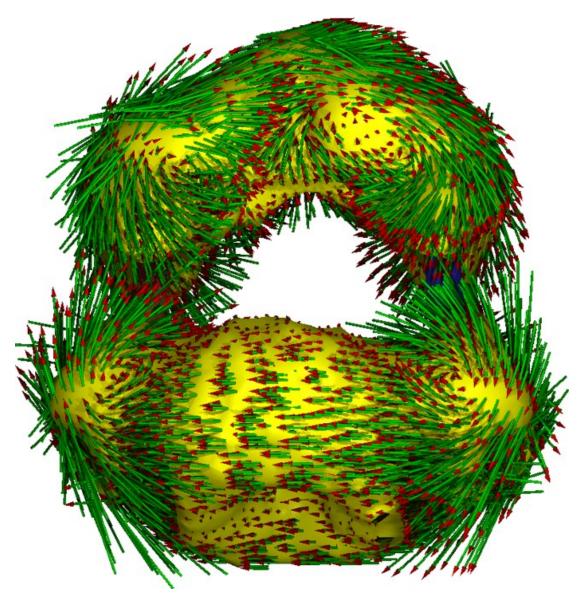
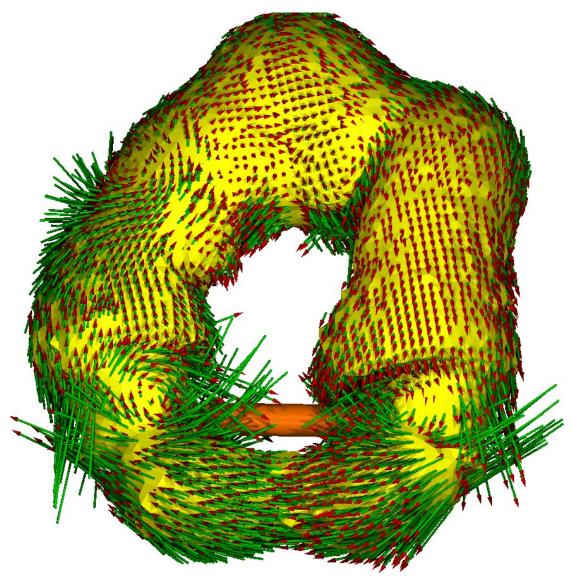



Fig. S18 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2Bi_2 ring in the S_0 state (π).

Fig. S19 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2Bi_2 ring in the S_0 state (σ).

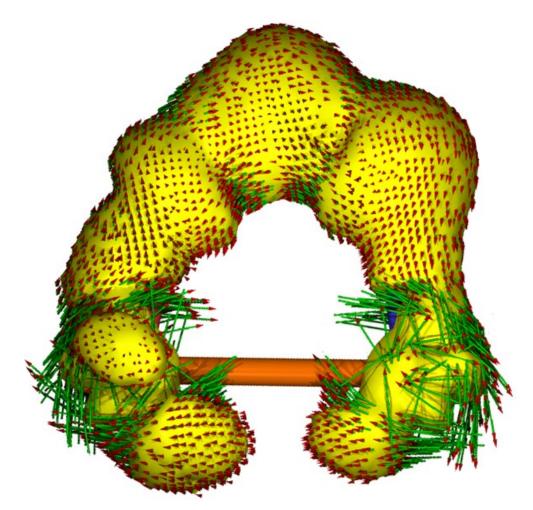
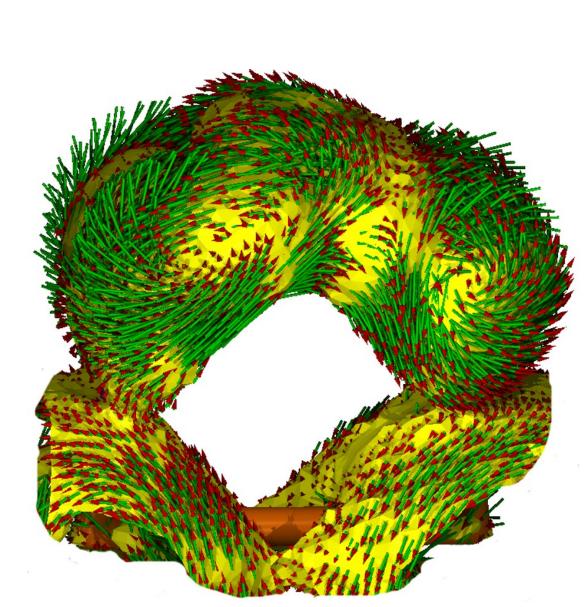
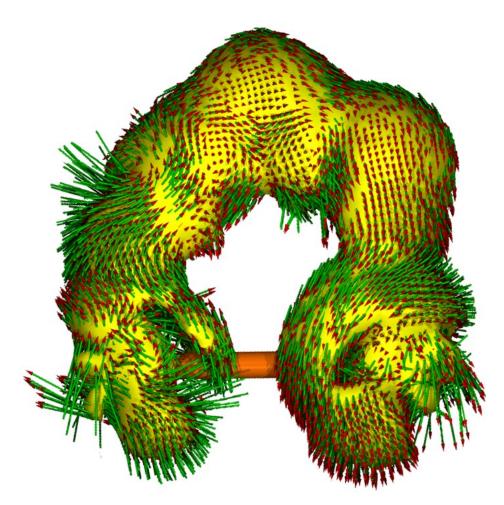




Fig. S20 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2Bi_2 ring in the T_1 state (total).

Fig. S21 ACID isosurface (isovalue: 0.015 a.u.) of the ON_2Bi_2 ring in the T_1 state (π).

Fig. S22 ACID isosurface (isovalue: 0.024 a.u.) of the ON_2Bi_2 ring in the T_1 state (σ).

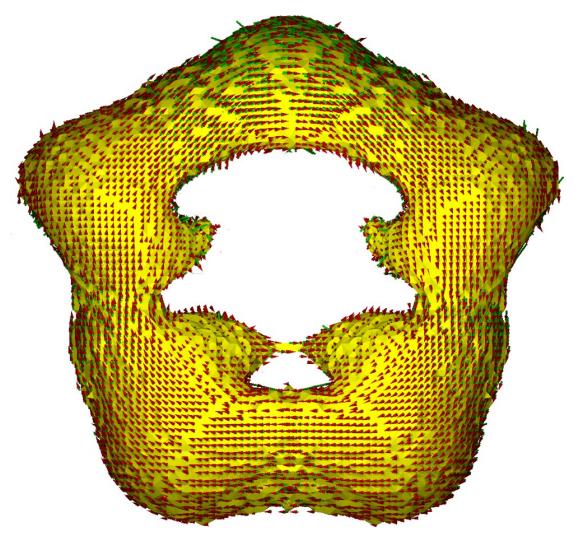
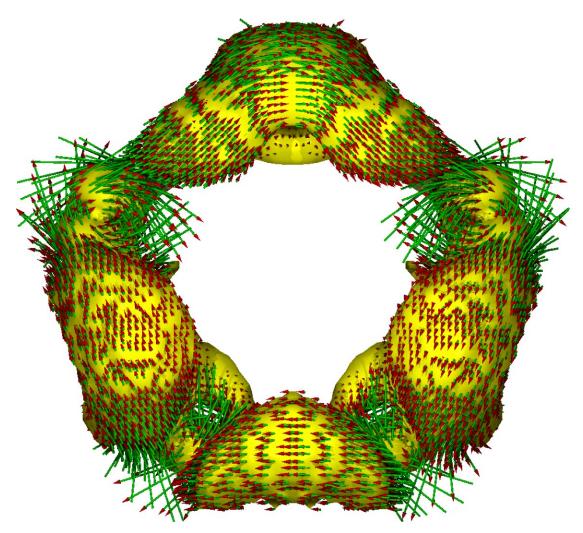
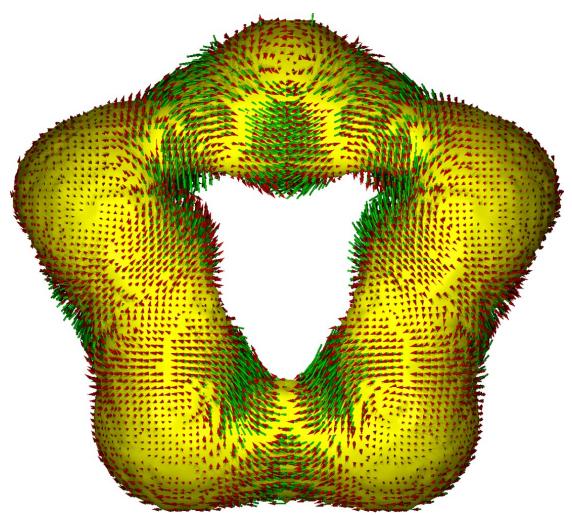
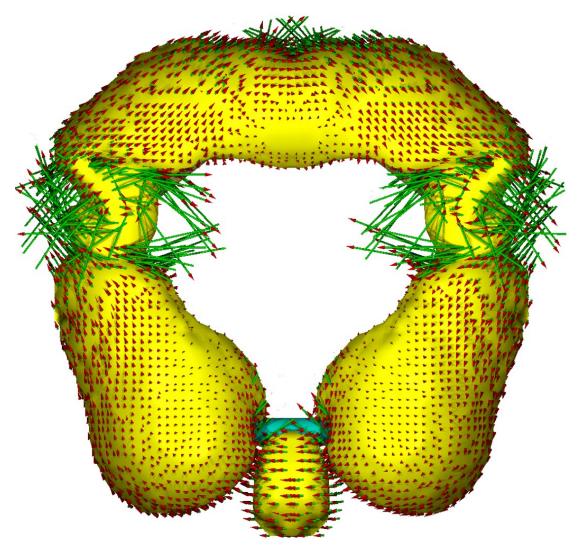
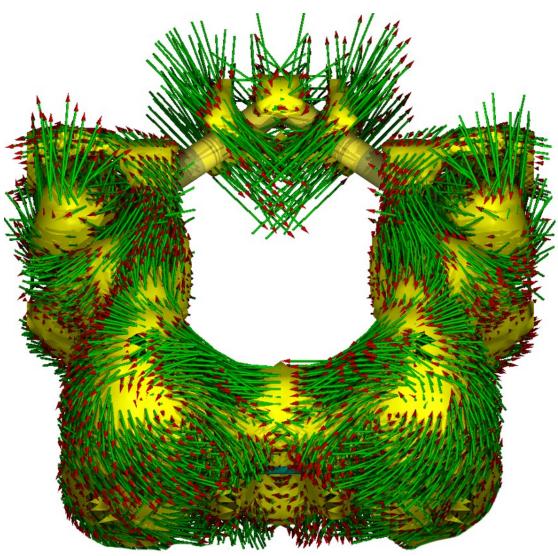
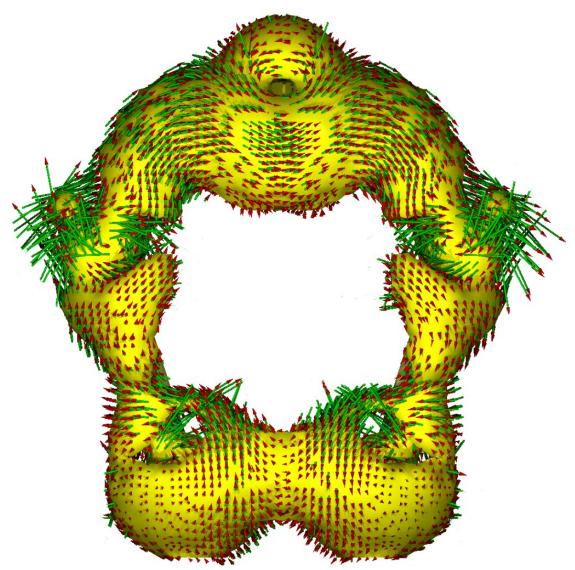




Fig. S23 ACID isosurface (isovalue: 0.024 a.u.) of the SAs_2Sb_2 ring in the S_0 state (total).

Fig. S24 ACID isosurface (isovalue: 0.024 a.u.) of the SAs₂Sb₂ ring in the S₀ state (π).

Fig. S25 ACID isosurface (isovalue: 0.024 a.u.) of the SAs₂Sb₂ ring in the S₀ state (σ).

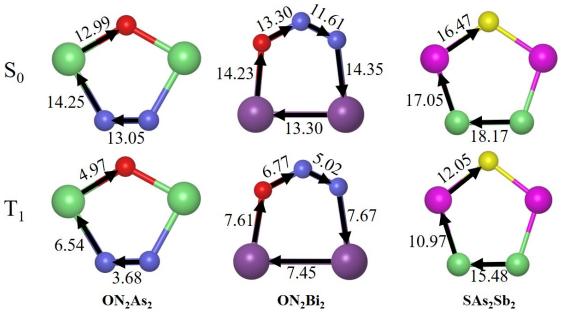

Fig. S26 ACID isosurface (isovalue: 0.024 a.u.) of the SAs_2Sb_2 ring in the T_1 state (total).

Fig. S27 ACID isosurface (isovalue: 0.024 a.u.) of the SAs₂Sb₂ ring in the T_1 state (π).

Fig. S28 ACID isosurface (isovalue: 0.024 a.u.) of the SAs₂Sb₂ ring in the T_1 state (σ).

Fig. S29 The strength of magnetically induced ring current (unit: nA T^{-1}) along selected bonds of ON_2As_2 , ON_2Bi_2 and SAs_2Sb_2 in two electronic states. The slight differences in the ring-current strengths for the ring bonds are due to the tilted vortex which causes the integration does not begin in the vortex center for all z values.

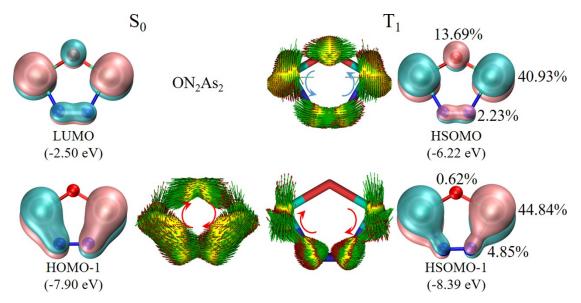
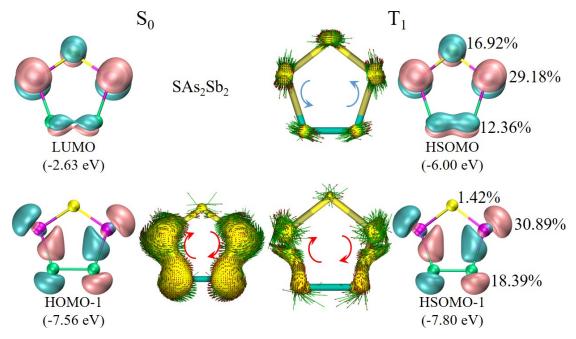



Fig. S30 ACID isosurfaces (isovalue: 0.024 a.u.) for the frontier molecular orbitals involved in the electron excitation from the S_0 to T_1 state of ON_2As_2 . The contribution (%) of each atom to the HSOMO/HSOMO-1 is given.

Fig. S31 ACID isosurfaces (isovalue: 0.024 a.u.) for the molecular orbitals involved in the electron excitation from the S_0 to T_1 state of SAs_2Sb_2 . The contribution (%) of each atom to the HSOMO/HSOMO-1 is given.

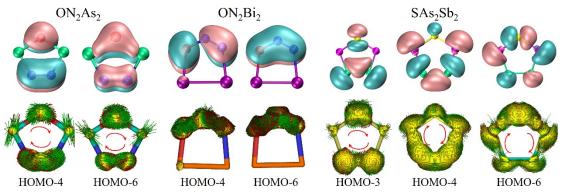


Fig. S32 ACID isosurfaces (isovalue: 0.024 a.u.) for selected molecular orbitals of ON_2As_2 , ON_2Bi_2 and SAs_2Sb_2 in the S_0 state.

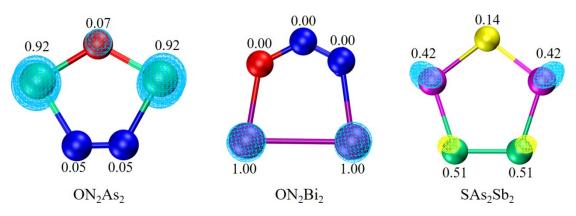


Fig. S33 Spin density distributions (isovalue: 0.02 a.u.) with spin values for the T_1 state of ON_2As_2 , ON_2Bi_2 and SAs_2Sb_2 .

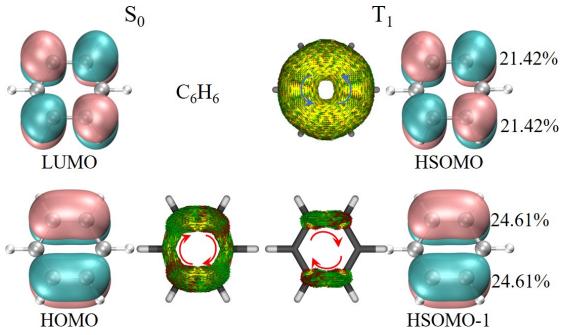


Fig. S34 ACID isosurfaces (isovalue: 0.024 a.u.) for the molecular orbitals involved in the electron excitation from the S_0 to T_1 state of Bz. The contribution (%) of each atom to the HSOMO/HSOMO-1 is given.

Optimized Cartesian coordinates

$ON_2As_2(S_0)$			
0	0.00000000	0.00000000	1.11992220
As	0.00000000	1.49394753	0.15991780
As	0.00000000	-1.49394753	0.15991780
Ν	0.00000000	0.65657766	-1.39385374
Ν	0.00000000	-0.65657766	-1.39385374
$ON_2As_2(T_1)$			
0	0.00000000	0.00000000	1.07924614
As	0.00000000	1.55169894	0.18183321
As	0.00000000	-1.55169894	0.18183321
Ν	0.00000000	0.59121408	-1.47392579
Ν	0.00000000	-0.59121408	-1.47392579
$ON_2Bi_2(S_0)$			
0	2.04879830	-0.74665247	0.00000000
Ν	2.43910899	0.53858803	0.00000000
Ν	1.68409795	1.47265005	0.00000000
Bi	0.00000000	-1.37320402	0.00000000
Bi	-0.54521488	1.27554804	0.00000000

 $ON_2Bi_2(T_1)$

0	2.03451215	0.76289405	0.00000000
Ν	2.44129518	-0.53395604	0.00000000
Ν	1.71936712	-1.48449811	0.00000000
Bi	0.00000000	1.49447811	0.00000000
Bi	-0.54699704	-1.39777810	0.00000000
$SAs_2Sb_2(S_0)$			
S	0.00000000	0.00000000	2.05152039
Sb	0.00000000	1.97133122	0.71563373
Sb	0.00000000	-1.97133122	0.71563373
As	0.00000000	-1.17601339	-1.60331769
As	0.00000000	1.17601339	-1.60331769
$SAs_2Sb_2(T_1)$			
S	-0.00003818	-0.00000002	2.22252397
Sb	0.00003080	1.91336006	0.74045750
Sb	0.00003080	-1.91336014	0.74045756
As	-0.00001171	-1.12656825	-1.71364243
As	-0.00001171	1.12656836	-1.71364258

Notes and references	Notes	and	references
----------------------	-------	-----	------------

S 1	Τ.	Lu,	<i>J</i> .	Mol.	Model., 2021,	27 , 263.