Supplementary information to "The primary photo-dissociation dynamics of aqueous formamide and dimethylformamide"

by Jan Thøgersen, Tobias Weidner and Frank Jensen.

Fig. SI 1.

The infrared absorption spectra of formamide in D_2O .

Infrared spectrum of Dimethylamine in D₂O

Table SI 1. Calculated transition frequencies and intensities for the CO stretch transition in isolated CO				
¹² C- ¹⁶ O:				
Mode(n)	E(harm) E(anharm) I(harm) I(anharm)			
1(1)	2244.824 2216.274 86.07996330 85.83573205			
¹³ C- ¹⁶ O:				
Mode(n)	E(harm) E(anharm) I(harm) I(anharm)			
1(1)	2194.784 2167.484 82.28503140 82.05687976			

Table SI 2

Selected calculated transition frequencies and intensities for the isolated dimethylamine radical:

Mode(n)	E(harm)	E(anharm	n) I(harm)	l(anharm)
1(1)	3146.657	3146.657	12.01247568	12.01247568
2(1)	2984.294	2984.294	16.96124969	16.96124969
3(1)	1485.262	1565.616	2.80475471	2.73854023
4(1)	1404.591	1397.450	31.05893307	31.82715729
5(1)	1219.992	1278.499	0.05882885	15.44094307
6(1)	954.405	954.405	7.66082399	7.66082399
7(1)	448.961	448.961	2.37158077	2.37158077
8(1)	3047.492	3047.492	0.00000000	0.00000000
9(1)	1462.383	1426.203	0.00000000	0.00000000
10(1)	1016.135	1109.930	0.00000000	0.00000000
11(1)	31.059	31.059	0.0000000	0.00000000
12(1)	3050.853	3050.853	45.19678315	45.19678315
12/1)				
15(1)	1482.951	1487.795	27.02608970	23.73462033
13(1)	1482.951 943.324	1487.795 943.324	27.02608970 0.78364205	23.73462033 0.78364205
13(1) 14(1) 15(1)	1482.951 943.324 144.186	1487.795 943.324 144.186	27.02608970 0.78364205 1.94749158	23.73462033 0.78364205 1.94749158
13(1) 14(1) 15(1) 16(1)	1482.951 943.324 144.186 3145.287	1487.795 943.324 144.186 3145.287	27.02608970 0.78364205 1.94749158 44.02101166	23.73462033 0.78364205 1.94749158 44.02101166
13(1) 14(1) 15(1) 16(1) 17(1)	1482.951 943.324 144.186 3145.287 2977.007	1487.795 943.324 144.186 3145.287 2977.007	27.02608970 0.78364205 1.94749158 44.02101166 16.51944231	23.73462033 0.78364205 1.94749158 44.02101166 16.51944231
13(1) 14(1) 15(1) 16(1) 17(1) 18(1)	1482.951 943.324 144.186 3145.287 2977.007 1461.345	1487.795 943.324 144.186 3145.287 2977.007 1581.886	27.02608970 0.78364205 1.94749158 44.02101166 16.51944231 0.88337644	23.73462033 0.78364205 1.94749158 44.02101166 16.51944231 1.65333538
13(1) 14(1) 15(1) 16(1) 17(1) 18(1) 19(1)	1482.951 943.324 144.186 3145.287 2977.007 1461.345 1385.945	1487.795 943.324 144.186 3145.287 2977.007 1581.886 1389.605	27.02608970 0.78364205 1.94749158 44.02101166 16.51944231 0.88337644 0.32414295	23.73462033 0.78364205 1.94749158 44.02101166 16.51944231 1.65333538 2.67026041
13(1) 14(1) 15(1) 16(1) 17(1) 18(1) 19(1) 20(1)	1482.951 943.324 144.186 3145.287 2977.007 1461.345 1385.945 1247.279	1487.795 943.324 144.186 3145.287 2977.007 1581.886 1389.605 1230.314	27.02608970 0.78364205 1.94749158 44.02101166 16.51944231 0.88337644 0.32414295 4.27652269	23.73462033 0.78364205 1.94749158 44.02101166 16.51944231 1.65333538 2.67026041 1.54002207

Table SI 3. Calculated transition frequencies for the dimethylamine radical with one explicit water molecule

E(harm)	E(anharm)

10(1)	1484.981 1457.672
11(1)	1478.650 1584.209
12(1)	1460.184 1431.289
13(1)	1457.224 1373.949
14(1)	1404.541 1499.396
15(1)	1387.377 1524.970
16(1)	1265.387 1072.102
17(1)	1227.477 1271.020
18(1)	1042.756 1007.745
19(1)	1017.640 1111.454

Table SI 4

Selected calculated transition frequencies and intensities for isolated dimethylamine:

Mode(n)	E(harm)	E(anharm)	l(harm)	l(anharm)	
11(1)	1518.766	1482.986	22.87140575	11.93726936	
12(1)	1506.404	1429.725	14.33260770	8.96130503	
13(1)	1490.722	1441.930	14.70274912	17.73048621	
14(1)	1481.219	1425.195	2.76261297	13.89618226	
15(1)	1472.319	1421.335	4.69318170	2.15310950	
16(1)	1468.483	1463.386	9.01277890	3.33167411	
17(1)	1443.087	1385.182	0.00805202	0.04988853	
18(1)	1274.965	1255.547	0.25839152	1.01605078	
19(1)	1214.168	1155.132	12.45016276	7.94156646	
20(1)	1205.669	1168.154	31.02478160	24.14318249	
21(1)	1108.866	1074.930	0.21895369	0.14096097	
22(1)	1050.705	998.602	11.58348187	11.48538847	

Table SI 5

Selected calculated transition frequencies and intensities for dimethylamine with one explicit water molecule:

Mode(n)	E(harm)	E(anharm)	l(harm)	l(anharm)
11(1)	1518.766	1482.986	22.87140575	11.93726936
12(1)	1506.404	1429.725	14.33260770	8.96130503

13(1)	1490.722	1441.930	14.70274912	17.73048621
14(1)	1481.219	1425.195	2.76261297	13.89618226
15(1)	1472.319	1421.335	4.69318170	2.15310950
16(1)	1468.483	1463.386	9.01277890	3.33167411
17(1)	1443.087	1385.182	0.00805202	0.04988853
18(1)	1274.965	1255.547	0.25839152	1.01605078
19(1)	1214.168	1155.132	12.45016276	7.94156646
20(1)	1205.669	1168.154	31.02478160	24.14318249
21(1)	1108.866	1074.930	0.21895369	0.14096097
22(1)	1050.705	998.602	11.58348187	11.48538847

The first 20 ps of the transient absorption of formamide from v = 1220 cm⁻¹ to v = 1480 cm⁻¹.

The first 20 ps of the transient absorption of formamid from v = 1300 cm⁻¹ to v = 1520 cm⁻¹.

SI ES 1

Estimate of ammonia yield:

Using the measured transient absorption of NH₃(aq) at v = 1111 cm⁻¹ and formamide at v = 1387 cm⁻¹ together with the corresponding measured extinction coefficients, we estimate the fraction of excited formamide molecules that have dissociated to NH₃ after t = 20 ps to Φ (NH₃, t = 20 ps) = - (Δ A(v= 1111 cm⁻¹, t = 20 ps)) × ϵ_{FA} (v = 1387cm⁻¹) /(Δ A(v = 1387 cm⁻¹, t = 1 ps) × ϵ_{NH3} (v = 1111 cm⁻¹)) = - (0.042 mOD×190 l/mol cm /(-0.65 mOD × 54 l/mol cm) = 0.23 ± 0.10. Using formamide's transient absorption dip at v = 1055 cm⁻¹ instead of that at v = 1387 cm⁻¹ still yields Φ (NH₃, t = 20 ps) = 0.23 ± 0.10.

SI ES 2

Estimate of expected CO absorption:

We can make a rough estimate of the expected induced absorption from CO assuming that every NH₃ molecule is accompanied by a CO molecule. If we apply the induced absorption of NH₃, $\Delta A(NH_3) = 0.06 \text{ mOD}$, and the calculated transition strengths of $\delta(NH_3)$ (I = 161 km/mol) and vCO (I = 86 km/mol) together with their assumed spectral widths of $\Delta v = 64 \text{ cm}^{-1}$ and $\Delta v = 42 \text{ cm}^{-1}$, respectively, we find a value of ΔA (CO) $\approx 0.05 \text{ mOD}$. The $\Delta v = 42 \text{ cm}^{-1}$ spectral width of the CO absorption band is taken from the Dimethylformamide data.

Fig. SI 7.

The difference between the induced transient absorption of ${}^{13}C$ and ${}^{12}C$ formamide measured from v = 2160 cm⁻¹ to v = 2310 cm⁻¹.

Fig. SI 8.

(0,0)(0,0

The difference between the induced transient absorption of ¹³C and ¹²C formamide measured from v = 2070 cm⁻¹ to v = 2200 cm⁻¹.

SI ES 3

Detectivity of NH₂(aq)

The calculated intensity of the NH₂ bending transition is I = 23 km/mol and thus only 1/7 of the NH₃(aq) intensity of I = 161 km/mol. Assuming the same spectral width and yield for NH₂(aq) and NH₃(aq), the formation of NH₂ will results in an induced absorption ΔA = 0.009 mOD. This is below the detection limit of our infrared transient absorption spectrometer.

Furthermore, at transition frequencies higher than v = 1534 cm⁻¹ (not shown) the transient absorption spectrum is dominated by the contribution from the heat induced absorption change of the H₂O bending mode. If therefore the calculated transition value is low by more than v = 10 cm⁻¹, NH₂ cannot be identified by our transient absorption spectrometer, even if the yield is higher or the assumed spectral width and intensity are off by a factor of two.

SI ES 4

Comparison with previous experiments

The primary photolysis of aqueous formamide at 200 nm has previously been studied by Petersen et al.^{SI1} Using femtosecond UV/Vis transient absorption spectroscopy, the authors showed that the majority of excited formamide molecules (~80%) decay to the vibrationally excited electronic ground state, followed by efficient vibrational relaxation towards the ground state in just a few picoseconds. The recombination yield is in good agreement with the value derived from the present data and the vibrational relaxation time reported by Petersen et al. also agrees with the present relaxation data. Based on meticulous spectral analysis Petersen et al. assigned the photoproducts to NH₂ + HCO. HCO was not observed directly, but good agreement between the recorded

UV-Vis transient absorption data reproduced from Petersen et al. ^{SI1} compared to the total absorption assuming HCONH₂ dissociate to HCO+ NH_2 (black), both HCO + NH_2 and CO + NH_3 (red) and only CO + NH_3 (green). In addition, the absorption from e_{aq}^- , OH^- and H^+ formed by two-photon ionization and dissociation are added to the spectra using the relative yields reported by Thomsen et al. ^{SI2}

transient absorption spectrum and the distinctive spectrum of NH₂(aq) gave strong evidence for the formation of NH₂. NH₂ is not identified by the present IR measurements for reasons discussed already. Our measurements show the formation of NH₃. This product was not reported by Petersen et al.. The figure shows the UV-Vis transient absorption spectrum after t = 20 ps reported by Petersen et al..^{SI1} The experimental data are compared to the total absorption assuming different dissociation yields of NH₂ and NH₃. The black curve is calculated assuming HCONH₂ dissociate to HCO + NH₂ like in the analysis by Petersen et al.. The red curve assumes HCONH₂ dissociates to equal yields of both HCO + NH₂ and CO + NH₃, while the green curve assumes only CO + NH₃ are produced. Like Petersen et al we furthermore add the absorption from e_{aq}^- , OH⁻ and H⁺ to account for the contribution from two-photon ionization and dissociation of the water solvent. This contribution is added assuming the same relative yields of the products as those reported by Thomsen et al.^{SI2} following two photon excitation of water at $\lambda = 266$ nm. The figure shows acceptable agreement between the transient data and the calculated curves calculated for dissociation into equal yields of the HCO + NH₂ and CO + NH₃ and for dissociation into HCO + NH₂ alone. The curve calculated for the case of dissociation into solely CO + NH₃ fails to catch the UV part of the transient data and this scenario is thus incompatible with the measurements. Hence, the UV-Vis transient spectrum can accommodate the contribution from NH₃(aq) and the identification of NH₃(aq) in the present measurements is not in conflict with the data presented by Petersen et al.

SI references

- 1 C. Petersen, N. H. Dahl, S. Knak Jensen, J. Aa. Poulsen, J. Thøgersen and S. R. Keiding. J. Phys. Chem. A. 2008, 112, 3339.
- 2 C. Thomsen, D. Madsen, S. R. Keiding. J. Thøgersen. J. Chem. Phys. 1999, 110, 3453.