Supporting information

Insights into reaction mechanisms of ethanol electrooxidation at the Pt/Au(111) interfaces by density functional theory

Tian Sheng,^{a*} Han-Yue Wu,^a Xiao Lin,^b Wen-Feng Lin^{c*}

^a College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China.

^b Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom.

^c Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom.

Fig. S1 Calculated H* adsorption energies (units in eV) at the stepped interface with different Pt coverage on Au(111).

Fig. S2 Calculated Gibbs free energy of the reaction, $CH_3CH_2OH \rightarrow CH_3CHOH^* +$ H*, with different Monkhorst-Pack *k*-point sampling at the (111)×(110) interface.

Fig. S3 The stability of the Pt/Au(111) interface model in thermodynamics.

atom	vacuum	(111) terrace	(111)×(110) interface	(111)×(100) interface
C ₁	+0.38	+0.27	+0.33	+0.32
C ₂	-0.12	-0.11	-0.12	-0.08
H ₁	+0.04	+0.08	+0.05	+0.02
H ₂	+0.06	+0.03	+0.06	+0.09
H ₃	+0.05	+0.07	+0.07	+0.04
H ₄	+0.05	+0.09	+0.09	+0.10
H ₅	+0.63	+0.64	+0.61	+0.66
H ₆	+0.06	+0.11	+0.08	+0.07
0	-1.15	-1.07	-1.04	-1.10
total	0	+0.12	+0.12	+0.12

Fig. S4 Bader charge analysis of each atom (units in e) in the ethanol molecule in vacuum and over the flat (111) terrace and stepped (111)×(110) and (111)×(100) interfaces on Pt/Au(111).

Fig. S5 Side views of optimized structures of intermediates over the flat (111) terrace and stepped (111)×(100) and (111)×(110) interfaces on Pt/Au(111).

Fig. S6 Optimized structures of $CH_3CO^* + OH^*$, the transition states and CH_3COOH^* on the (111)×(100) interface with one water molecule near the OH*.

Fig. S7 (a) Comparison of Gibbs free energy profiles for ethanol decomposition on Pt(111), Au(111) and Pt/Au(111). (b) Optimized structures of intermediates on Pt(111), Au(111) and Pt/Au(111).