Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting information

Probing the nature of Lewis acid sites on oxide surfaces with ³¹P(CH₃)₃ NMR: A theoretical analysis

Farahnaz Maleki and Gianfranco Pacchioni*

Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy

Figure S1 – Plot of computed ³¹P chemical shift versus (a) adsorption energy, E_{ads} , (b) charge on P atom as obtained from Bader analysis, q_P , (c) charge on the surface cation where the TMP molecule is adsorbed, $q_{M...P}$, (d) net charge on the whole TMP molecule, $q_{P(CH3)3}$, (e) cation-P distance, $R_{M...P}$, see also Table 1. All data included.

Figure S2 – Plot of computed ³¹P chemical shift versus (a) adsorption energy, E_{ads} , (b) charge on P atom as obtained from Bader analysis, q_P , (c) charge on the surface cation where the TMP molecule is adsorbed, $q_{M...P}$, (d) net charge on the whole TMP molecule, $q_{P(CH3)3}$, (e) cation-P distance, $R_{M...P}$, see also Table 1. Data referred to ZnO not included.

Figure S3 - Correlation between ³¹P NMR calculated and regression fitted by considering (a) adsorption energy (E_{ads}) and Bader charges (q(P(CH₃)₃) and q(M)) and (b) work functions (Φ) and Bader charges (q(P(CH₃)₃) and q(M)), see Table 1.

	a	b	с
Fig S3a	0.62	0.75	1.61
Fig S3b	0.08	0.60	0.95

Table S1. The coefficients of regression models for normalized set of data shown in Figure S3.