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1 Methods2

1.1 Redundant internal coordinates3

Different sets of internal coordinates may be obtained by different construction ways. There-4

fore, it is suitable to construct the internal coordinates with chemical meanings. In the5

current work, we simply used the redundant internal coordinates that are used as default by6

Gaussian package.1,2 More discussions on the construction of the chosen redundant internal7

coordinates are given in the references. For simplicity, we generated all internal coordinates8

by using the Gaussian 16 package. In implementation, we created the pseudo-optimization9

input files, ran the Gaussian calculation and read the redundant internal coordinates of the10

initial structures.11

In this analysis step, most geometries in the dynamics give the same set of redundant12

internal coordinates, while only a few geometries do not (<2%). This implies that the basic13

connectivity of the ring moiety is not destroyed in the nonadiabatic dynamics of the current14

system. Therefore, the current descriptor sets are acceptable.15
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1.2 Principal component analysis (PCA)16

The standard PCA algorithm3–8 is briefly given as follows.17

Firstly, it is necessary to centralize the dataset matrix X by subtracting the mean, and18

a centered matrix X′ is obtained:19

X′ = X− ⟨X⟩. (1)

Secondly, the covariance matrix C is calculated according to20

C = X
′TX′, (2)

where the superscript T denotes the matrix transpose operation.21

Thirdly, the eigenvalues and eigenvectors are obtained by solving the following eigenvalue22

problem23

Cνi = λiνi (3)

Here the eigenvalues {λi} describe the independent variances along each principal component,24

which are sorted by the decreasing order. Thus, λ1 denotes the largest eigenvalue and the25

corresponding eigenvector ν1 coincides with the direction of maximum variance, and so on.26

Fourthly, the k eigenvectors with the largest k eigenvalues are picked up to form the27

transformation matrix U′. Then the transformation from original high-dimensional dataset28

X to the reduced one Y is completed by29

Y = X′U′ (4)

namely, the PCA representation is ultimately obtained.30
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1.3 Clustering methods31

DBSCAN9 is a density-based clustering algorithm, in which clusters are defined as the re-32

gions with the high density of data points, and outliers are referred to the points lying in33

low-density regions. The DBSCAN algorithm basically requires two parameters, namely a34

distance measurement (ϵ) and a minimum number of neighbors (MinPts). If the data densi-35

ties in several clusters are rather different or the configuration of clusters are rather complex36

(such as the hierarchical configuration, that is, some clusters with several sub-clusters),37

DBSCAN cannot work well.10,1138

Agglomerative clustering12,13 is a partitioning scheme that seeks to build a bottom-up39

cluster tree according to the linkage criterion. It treats each data point as a stand-alone40

cluster and then successively merges them until the chosen resolution level (Threshold) is41

reached. Since this method needs all pairwise distance between data points, its use is limited42

by the sensitivity to outliers and the complexity of the calculation.13–1543
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1.4 Trajectory surface hopping (TSH) dynamics44

TSH is a mixed quantum-classical approach that incorporates the nonadiabatic transition45

between electronic states into molecular dynamics. In the TSH approach, the nuclear part46

is treated in the classical framework, and the electronic motion is described by the time-47

dependent quantum mechanics. The trajectories may undergo sudden “hops” between dif-48

ferent electronic states to account for nonadiabatic transitions.49

The hopping probability is determined by Tully’s FSSH algorithm16 in this work. After50

hops, the momentum is rescaled along the direction of the nonadiabatic coupling vector to51

ensure the energy conservation. For frustrated hops, the velocity component is reversed52

according to the direction of the nonadiabatic coupling vector.53

The ground state (GS) minimum and vibrational normal modes of keto isocytosine were54

obtained at the B3LYP/6-31G∗ level with the standard electronic-structure package Gaussian55

16. The initial conditions, i.e., geometries and velocities, are sampled by Wigner distribution56

function of the lowest vibrational level in the electronic ground state. Then we vertically57

placed them into the second excited state (S2) to start the TSH dynamics.58

In the on-the-fly TSH dynamics simulation, the time step of the nuclear motion and59

election evolution is 0.5 fs and 0.005 fs, respectively. In total, we considered 1000 trajectories60

starting from S2 with a total evolution time of 1.5 ps.61
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2 Nonadiabatic dynamics62

2.1 Time-dependent occupations of electronic states63

Because the decoherence correction was used, the time-dependent electronic populations and64

the fractional occupation numbers are highly consistent in the evolution (see Figure S1).65

Here, we noticed that some trajectories may sudden re-hops from S1 to S2 states at around66

30 - 60 fs. To clarified what happened in this situation, we optimized the S1-S2 CI and67

constructed the linear interpolated PES from the S0 minimum to S1-S2 CI in Figure S2. In68

the early stage of the nonadiabatic dynamics, the system moves along the reaction coordinate69

on the S2 PES to access S1-S2 CI quickly, and performs the hops before 30 fs. Afterwards,70

some trajectories move along the same reaction coordinates as shown in Figure S2, and71

return to the S1-S2 CI again due to the profile of the S1 PES. Consequently, the hops back72

to S2 state may take place, resulting the slight rising of the S2 population between 30 fs and73

60 fs. However, this population recurrence is rather minor because the vibrational relaxation74

and the energy flow to other degrees are dominant in the high dimensional system.75

6



Figure S1. Time-dependent average electronic populations and the fractional occupations of
adiabatic states in the nonadiabatic dynamics.
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Figure S2. Linear interpolated reaction paths from the ground-state minimum to S1-S2 CI
at the SA3-CASSCF level.
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2.2 Consistency between SA-CASSCF and B3LYP levels76

In this work, the initial conditions for the TSH dynamics at the SA3-CASSCF(12,9)/6-31G∗77

level are based on a sampling of a Wigner distribution constructed at the B3LYP/6-31G∗78

level. As illustrated in the following, the perturbation results from the switch from one79

electronic-structure method to the other can be neglected.80

In the simulation of nonadiabatic dynamics, the SA-CASSCF method is widely used to81

run the on-the-fly TSH dynamics, because this method can give the proper description on82

the CIs between the ground and excited states. However, this method often suffers from the83

problem with the non-smooth wavefunction along a reaction path. Therefore, we sometimes84

do not recommend running the ground-state optimization or normal mode calculations at85

the SA-CASSCF level. It is proper to choose MP2 and DFT to do these ground-state86

calculations in the initial sampling if no state crossing is involved.87

To further address this question, we also optimized the ground-state geometry at both88

SA3-CASSCF(12,9)/6-31G∗ and the B3LYP/6-31G∗ levels. As shown in Figure S3, these89

two resulting geometries are very similar, except the minor difference in the NH2 group.90

Their bond lengths are given in Table S1. At the same time, the normal-mode frequencies91

at these two levels are comparable (see Figure S4).92

Figure S3. Geometries of ground-state minimum optimized at the B3LYP (blue) and SA3-
CASSCF (red) levels, respectively.
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Figure S4. The frequencies obtained at SA3-CASSCF level with respect to these counterparts
at B3LYP level.
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Table S1: Bond lengths (Å) of the ground-state minimum optimized at the SA3-
CASSCF(12,9)/6-31G∗ and the B3LYP/6-31G∗ levels.

Bond SA-CASSCF B3LYP

R(1,4) 1.3633 1.3649

R(1,5) 1.2823 1.3121

R(1,6) 1.3828 1.3743

R(2,3) 1.3531 1.3661

R(2,10) 1.457 1.444

R(2,11) 1.0718 1.0829

R(3,5) 1.384 1.3679

R(3,12) 1.0733 1.0882

R(4,10) 1.4009 1.4262

R(4,13) 0.9971 1.0146

R(6,7) 0.9987 1.0116

R(6,8) 0.9982 1.0122

R(9,10) 1.2005 1.2226
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3 Additional results of the PCA93
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Figure S5. The PCA results of the ring part analysis. (A1)-(A4), (A5)-(A6) and (A7)-
(A8) represent the PCA results of all hopping geometries based on Dring, Aring and Rring,
respectively. (B) demonstrates the PCA results of all hopping geometries based on Dring

after the mirror operation, while the PCA results related to Aring and Rring are the same
as before since the angles and bond lengths are independent of the chirality. (C) displays
the PCA results of Cluster A1, and all these three cases indicate that the Cluster A1 is
non-separable.
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Figure S6. The analysis results of the end-group part. (A), (B) and (C) show the results
based on the end-group descriptor sets (that is, Deg, Aeg and Reg) of the Cluster A1, A1B2
and A1B2C1, respectively. (C) indicates that the Cluster A1B2C1 is non-separable.
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4 Statistical significance of the PCA results94

The bootstrapping is a statistical technique used to estimate the model uncertainty by re-95

sampling the dataset with replacement.17,18 Here, we employed it to examine the statistical96

significance of the major molecular motions of each channel, i.e., the robustness of the con-97

tribution of geometric features of the first reduced coordinates in each reduced subspace.98

We took the channel A1B2C1 as an example. For this channel, we collected the initial99

and hopping structures to form the data set. Next, we performed the bootstrap resampling100

(100 times) to give 100 datasets. In each resampled dataset, the initial geometry and cor-101

responding hopping geometry exist or vanish at the same time. Next, we performed PCA102

in each resampled data set, obtained the first reduced dimension and made the statistical103

analyses on all results. As shown in Figure S7, all major geometric features in the first104

reduced dimension remains unchanged in this bootstrap resampling procedure. The average105

results from the bootstrap analysis are highly consistent with the values obtained from the106

whole dataset, as the small variances are observed.

(a) (b)

(c) (d)
1st-dimension of Dring 1st-dimension of Aring

1st-dimension of Rring 1st-dimension of Deg

Figure S7. Box plots of the PCA results in four reduced subspaces (Dring, Aring, Rring and
Deg) based on the bootstrap resampling dataset.
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5 Structural information108

5.1 S0 minimum109

Table S2: The Cartesian coordinates of S0 minimum (Unit:Å).

Cartesian coordinates of S0-min

C 1.14365000 -0.17333700 -0.00453100

C -1.30214300 1.04894800 0.01042900

C -0.11122400 1.71814000 -0.00007100

N 0.00874200 -0.93161900 -0.00512100

N 1.12788700 1.13865300 0.00446900

N 2.34721100 -0.83390500 -0.06673100

H 2.41498300 -1.74258400 0.37272900

H 3.13808000 -0.22586300 0.10451900

O -2.26807800 -1.15785400 -0.00086100

C -1.31259000 -0.39504200 0.00438900

H -2.25464400 1.56409600 0.01417900

H -0.09845600 2.80623000 -0.00400100

H 0.05161400 -1.94319900 -0.07017100
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Table S3: The internal coordinates of S0 minimum. The unit of the bond length is Å, while
the units of the bond angles and dihedral angles are degree.

Internal coordinates of S0-min

R(1,4) 1.3649 R(1,5) 1.3121
R(1,6) 1.3743 R(2,3) 1.3661
R(2,10) 1.444 R(2,11) 1.0829
R(3,5) 1.3679 R(3,12) 1.0882
R(4,10) 1.4262 R(4,13) 1.0146
R(6,7) 1.0116 R(6,8) 1.0122
R(9,10) 1.2226

A(4,1,5) 123.0596 A(4,1,6) 117.4596
A(5,1,6) 119.4348 A(3,2,10) 119.7433
A(3,2,11) 122.2622 A(10,2,11) 117.9921
A(2,3,5) 125.6008 A(2,3,12) 120.0051
A(5,3,12) 114.3919 A(1,4,10) 124.1488
A(1,4,13) 121.252 A(10,4,13) 114.5009
A(1,5,3) 115.7499 A(1,6,7) 118.0821
A(1,6,8) 112.822 A(7,6,8) 114.4402
A(2,10,4) 111.688 A(2,10,9) 129.017
A(4,10,9) 119.2936

D(5,1,4,10) -0.0257 D(5,1,4,13) 176.1668
D(6,1,4,10) -177.5419 D(6,1,4,13) -1.3495
D(4,1,5,3) -0.627 D(6,1,5,3) 176.8425
D(4,1,6,7) -32.5113 D(4,1,6,8) -169.6756
D(5,1,6,7) 149.8788 D(5,1,6,8) 12.7145
D(10,2,3,5) -1.0769 D(10,2,3,12) 179.4877
D(11,2,3,5) 179.4942 D(11,2,3,12) 0.0587
D(3,2,10,4) 0.3283 D(3,2,10,9) -179.2334
D(11,2,10,4) 179.7815 D(11,2,10,9) 0.2198
D(2,3,5,1) 1.2058 D(12,3,5,1) -179.331
D(1,4,10,2) 0.1831 D(1,4,10,9) 179.7926
D(13,4,10,2) -176.24 D(13,4,10,9) 3.3695
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5.2 Internal coordinates of averaged structures110

Table S4: The averaged internal coordinates (involving no H atom) of structures in the
A1B1 cluster. The unit of the bond length is Å, while the units of the bond angles and
dihedral angles are degree.

A1B1

R(1,4) 1.402 R(1,5) 1.4373

R(1,6) 1.3862 R(2,3) 1.4478

R(2,10) 1.519 R(3,5) 1.3206

R(4,10) 1.4192 R(9,10) 1.201

A(4,1,5) 116.2681 A(4,1,6) 120.5751

A(5,1,6) 117.9529 A(3,2,10) 114.8519

A(2,3,5) 117.2388 A(1,4,10) 107.9942

A(1,5,3) 105.0508 A(2,10,4) 111.4593

A(2,10,9) 124.2974 A(4,10,9) 123.2821

D(5,1,4,10) 57.858 D(6,1,4,10) -132.7269

D(4,1,5,3) -70.2497 D(6,1,5,3) 119.8609

D(10,2,3,5) 29.5103 D(3,2,10,4) -40.2258

D(3,2,10,9) 132.3127 D(2,3,5,1) 21.506

D(1,4,10,2) -7.5297 D(1,4,10,9) -173.2045
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Table S5: The averaged internal coordinates (involving no H atom) of structures in the
A1B2C1 cluster. The unit of the bond length is Å, while the units of the bond angles and
dihedral angles are degree.

A1B2C1

R(1,4) 1.3847 R(1,5) 1.4635

R(1,6) 1.3819 R(2,3) 1.4629

R(2,10) 1.481 R(3,5) 1.306

R(4,10) 1.4348 R(9,10) 1.2159

A(4,1,5) 113.0952 A(4,1,6) 120.7892

A(5,1,6) 117.36 A(3,2,10) 115.5994

A(2,3,5) 118.2894 A(1,4,10) 106.7593

A(1,5,3) 105.2174 A(2,10,4) 112.6647

A(2,10,9) 125.7333 A(4,10,9) 120.6726

D(5,1,4,10) 66.7553 D(6,1,4,10) -145.2397

D(4,1,5,3) -69.7947 D(6,1,5,3) 141.07

D(10,2,3,5) 28.5417 D(3,2,10,4) -29.8875

D(3,2,10,9) 154.1494 D(2,3,5,1) 18.3939

D(1,4,10,2) -14.9181 D(1,4,10,9) 161.9058
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Table S6: The averaged internal coordinates (involving no H atom) of structures in the
A1B2C2 cluster. The unit of the bond length is Å, while the units of the bond angles and
dihedral angles are degree.

A1B2C2

R(1,4) 1.3921 R(1,5) 1.4318

R(1,6) 1.3986 R(2,3) 1.4557

R(2,10) 1.4978 R(3,5) 1.3238

R(4,10) 1.4099 R(9,10) 1.2085

A(4,1,5) 113.7156 A(4,1,6) 125.1102

A(5,1,6) 119.5453 A(3,2,10) 116.0687

A(2,3,5) 118.0463 A(1,4,10) 106.9198

A(1,5,3) 105.0157 A(2,10,4) 113.0124

A(2,10,9) 122.4846 A(4,10,9) 123.573

D(5,1,4,10) 67.3561 D(6,1,4,10) -120.321

D(4,1,5,3) -70.736 D(6,1,5,3) 116.3536

D(10,2,3,5) 24.1164 D(3,2,10,4) -26.7504

D(3,2,10,9) 150.5567 D(2,3,5,1) 20.8707

D(1,4,10,2) -15.581 D(1,4,10,9) 167.8496
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Table S7: The averaged internal coordinates (involving no H atom) of structures in the
A1B2C3 cluster. The unit of the bond length is Å, while the units of the bond angles and
dihedral angles are degree.

A1B2C3

R(1,4) 1.4006 R(1,5) 1.3766

R(1,6) 1.4194 R(2,3) 1.4162

R(2,10) 1.4857 R(3,5) 1.3638

R(4,10) 1.4392 R(9,10) 1.1907

A(4,1,5) 112.2453 A(4,1,6) 118.5604

A(5,1,6) 119.0969 A(3,2,10) 120.0945

A(2,3,5) 116.0868 A(1,4,10) 111.693

A(1,5,3) 111.1105 A(2,10,4) 111.8579

A(2,10,9) 124.2855 A(4,10,9) 122.9968

D(5,1,4,10) 59.0537 D(6,1,4,10) -88.0358

D(4,1,5,3) -65.3207 D(6,1,5,3) 81.2665

D(10,2,3,5) 14.7211 D(3,2,10,4) -18.8928

D(3,2,10,9) 161.3491 D(2,3,5,1) 27.0682

D(1,4,10,2) -17.2491 D(1,4,10,9) 163.8875
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Table S8: The averaged internal coordinates (involving no H atom) of structures in the
A1B3 cluster. The unit of the bond length is Å, while the units of the bond angles and
dihedral angles are degree.

A1B3

R(1,4) 1.3952 R(1,5) 1.4109

R(1,6) 1.3998 R(2,3) 1.4401

R(2,10) 1.4766 R(3,5) 1.3266

R(4,10) 1.4697 R(9,10) 1.2174

A(4,1,5) 111.6613 A(4,1,6) 121.0451

A(5,1,6) 119.6842 A(3,2,10) 118.8506

A(2,3,5) 116.9229 A(1,4,10) 103.0407

A(1,5,3) 109.4695 A(2,10,4) 113.8025

A(2,10,9) 125.0355 A(4,10,9) 119.3685

D(5,1,4,10) 71.9437 D(6,1,4,10) -112.6557

D(4,1,5,3) -68.6195 D(6,1,5,3) 114.5389

D(10,2,3,5) 15.2461 D(3,2,10,4) -9.8528

D(3,2,10,9) -171.5635 D(2,3,5,1) 25.0008

D(1,4,10,2) -35.2325 D(1,4,10,9) 137.383
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Table S9: The averaged internal coordinates (involving no H atom) of structures in the A2
cluster. The unit of the bond length is Å, while the units of the bond angles and dihedral
angles are degree.

A2

R(1,4) 1.4063 R(1,5) 1.4086

R(1,6) 1.4132 R(2,3) 1.5724

R(2,10) 1.3246 R(3,5) 1.3028

R(4,10) 1.4029 R(9,10) 1.3867

A(4,1,5) 121.7051 A(4,1,6) 116.5984

A(5,1,6) 119.4355 A(3,2,10) 114.0328

A(2,3,5) 119.3661 A(1,4,10) 114.3933

A(1,5,3) 118.7886 A(2,10,4) 124.8

A(2,10,9) 124.1674 A(4,10,9) 108.4868

D(5,1,4,10) -16.3403 D(6,1,4,10) -165.9422

D(4,1,5,3) 13.1871 D(6,1,5,3) 168.6346

D(10,2,3,5) -12.5521 D(3,2,10,4) 10.8199

D(3,2,10,9) 168.2209 D(2,3,5,1) 10.9482

D(1,4,10,2) 13.0128 D(1,4,10,9) 162.2635
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5.3 Cartesian coordinates of the typical structures111

Table S10: The Cartesian coordinates of the typical structures of the A1B1 cluster (Unit:Å).

A1B1

C 1.0413868345 -0.3070839514 0.1159753547

C -0.9905443110 0.8882539190 -0.7335673091

C -0.0081772859 1.6486562030 -0.0125405372

N -0.0345932501 -1.0883812862 0.4437425727

N 0.8888190206 1.0376964937 0.6354450029

N 2.2619148271 -0.5320635539 -0.5229254878

H 3.1276613950 -0.0032197297 -0.1418951916

H 2.2729622337 -0.8278291643 -1.4568480217

O -2.2730631316 -0.9010270646 0.1751950309

C -1.2186511097 -0.4853203912 -0.0733317631

H -1.6838718711 1.3095216329 -1.4726666699

H -0.1387034045 2.7317575820 -0.0279058842

H 0.0206179223 -2.0378958473 0.5680886624
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Table S11: The Cartesian coordinates of the typical structures of the A1B2C1 cluster
(Unit:Å).

A1B2C1

C 0.9957209538 -0.1994957544 -0.0509099001

C -1.1217107234 0.9021865963 -0.5816924609

C -0.0361624639 1.7895343020 0.0005242652

N -0.0274889592 -0.9060763123 0.3813484775

N 1.0918513015 1.1778176365 0.5500011025

N 2.2183385086 -0.7787725433 -0.3261751317

H 2.0518901017 -1.7059103176 -0.6686610558

H 2.8181942521 -0.0254276595 -0.6958446092

O -2.2114105275 -1.1298945557 0.0550844214

C -1.2286429302 -0.4821754186 -0.0131612585

H -2.0899529622 1.2953160957 -0.620490461

H 0.0428846503 2.8933019513 0.1454735844

H 0.0374897055 -1.8559318703 0.6791520803
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Table S12: The Cartesian coordinates of the typical structures of the A1B2C2 cluster
(Unit:Å).

A1B2C2

C 0.9708348860 -0.0934762073 0.2029202195

C -0.8920574441 0.7672074905 -0.8666924291

C 0.0739729650 1.6996652206 -0.4703984912

N -0.0726976688 -0.8806616737 0.7965769225

N 1.0323622202 1.3119581355 0.3513628692

N 2.1352518139 -0.6779344159 -0.1450885037

H 2.8305626524 -0.3961072858 -0.8506502676

H 2.0744189270 -1.6009677218 -0.5468788740

O -2.2968566118 -1.2020485893 0.0936047421

C -1.2431535494 -0.5712496877 0.0008163889

H -1.4961223661 0.9877334915 -1.7585583453

H -0.2652935116 2.6656842297 -0.7586229467

H 0.0303461670 -1.0853793066 1.7303051695
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Table S13: The Cartesian coordinates of the typical structures of the A1B2C3 cluster
(Unit:Å).

A1B2C3

C 0.9050719325 -0.2929361927 0.4988235889

C -0.6251175425 0.9558308913 -0.8961392721

C 0.3365212594 1.7432520503 -0.1642041534

N -0.3027205339 -0.8557718184 0.6336679676

N 1.0045016497 1.0750568935 0.8616760237

N 1.8675581891 -1.0054887075 -0.206139901

H 1.9796821979 -1.8816050025 0.2864310304

H 2.8768887437 -0.7139074456 -0.2932925674

O -2.2193073158 -0.8858690094 -0.4763904908

C -1.1639222942 -0.3361304420 -0.2516218127

H -1.6809914699 1.4265243161 -1.1193510798

H 0.2930566346 2.8346006933 -0.2850880108

H -0.4248423375 -1.5685203481 1.2431927806
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Table S14: The Cartesian coordinates of the typical structures of the A1B3 cluster (Unit:Å).

A1B3

C 1.0986043426 -0.1902790124 0.2716363242

C -1.1938955766 0.9128111201 -0.4692701454

C 0.0937589698 1.7711558021 0.0871010012

N -0.0835897156 -0.8263654037 0.7385828462

N 1.0899298556 1.2646415334 0.5892611512

N 1.9567440720 -0.7560969521 -0.6425177239

H 1.6760778377 -1.3678790940 -1.3465816776

H 2.6386277690 -0.0254570440 -0.8744018596

O -2.0000740890 -1.3619131073 -0.3944141959

C -1.2263825559 -0.4334270400 -0.0440594228

H -2.0890132646 1.4800749019 -0.3934355391

H -0.1995079137 2.7774935979 -0.1423045481

H -0.0094327899 -1.8031752876 0.9051499589

28



Table S15: The Cartesian coordinates of the typical structures of the A2 cluster (Unit:Å).

A2

C 1.1305970189 -0.2603009267 -0.1351821600

C -1.3813607848 0.9681435923 -0.0696961853

C 0.0294070106 1.8149509089 0.0690967597

N -0.0091265466 -0.9709345943 -0.0038336372

N 1.1339510191 1.2825089229 0.0174327198

N 2.3375280759 -0.8913893309 -0.0389274820

H 2.2109259547 -1.6062481799 0.4252334189

H 2.7746303574 -0.1786492877 0.4173529051

O -2.3027939037 -1.2569985934 0.0379313300

C -1.2099495269 -0.2819481071 0.0223353940

H -2.5137870583 1.6084475760 -0.0162152898

H -0.0484693459 3.0575039114 0.1132175839

H -0.1201605429 -2.0038461129 -0.2501211240
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6 Conical intersections112

6.1 The Cartesian coordinates113

Table S16: The Cartesian coordinates of the Ethyl.I CI (Unit:Å).

Ethyl.I

C 0.982646 -0.261045 0.757038

C -0.765071 0.958395 -0.731474

C 0.295363 1.669170 -0.205710

C -1.164481 -0.324923 -0.115891

N -0.296511 -0.787534 0.899566

N 0.955011 1.100684 0.830000

N 1.851896 -0.842078 -0.178661

O -2.156085 -0.940054 -0.409997

H 1.747962 -1.831126 -0.272666

H 2.808642 -0.598386 -0.028927

H -1.452659 1.392482 -1.429032

H 0.465524 2.705496 -0.430420

H -0.425859 -1.746043 1.147739
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Table S17: The Cartesian coordinates of the Ethyl.II CI (Unit:Å).

Ethyl.II

C 1.033840 -0.107553 -0.067211

C -1.001759 0.917653 -0.657173

C -0.037673 1.770472 0.039862

N 0.017183 -0.904932 0.451746

N 1.042721 1.220605 0.486212

N 2.256078 -0.663747 -0.349755

H 2.952987 0.011072 -0.586520

H 2.233567 -1.428635 -0.991586

O -2.129828 -1.159564 -0.323290

C -1.159637 -0.462665 -0.170535

H -1.821985 1.329966 -1.213630

H -0.258016 2.795110 0.285585

H 0.138281 -1.884716 0.593061
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Table S18: Cartesian coordinates of the C=O stretching CI (Unit:Å).

C=O stretching

C 1.131280 -0.143784 0.105868

C -1.333251 0.993382 0.190412

C -0.061705 1.814972 -0.095676

C -1.197695 -0.276015 -0.052031

N -0.002075 -0.981078 -0.144037

N 1.123477 1.152470 -0.044085

N 2.329847 -0.868614 0.057935

O -1.915261 -1.466363 0.308440

H 2.394755 -1.540199 0.797794

H 3.111439 -0.246529 0.095322

H -2.206112 1.435326 0.628087

H -0.091958 2.668122 -0.746006

H 0.101014 -1.531621 -0.979038
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6.2 Branching space114

The description of the branching space for CIs is also critical, which is spanned by two115

vectors, i.e., the gradient difference g vector and the derivative coupling h vector. We116

calculated the orthogonal g and h vectors for each CI, and these scaled vectors are shown in117

Figure S8. In addition, we also computed the s vector (after the orthogonalization to both g118

and h vectors) that characterizes the CI seam. The way to construct these three orthogonal119

vectors can be found in the work of Yarkony.19120

These vectors confirm the major molecular motions identified by our analytical protocol.121

For example, at the Ethyl.I CI, the C1-puckering motion was identified as the major one by122

our protocol, which was confirmed by the g vector as shown in Figure S8.(a). At the Ethyl.II123

CI, the g vector verifies the dominant roles of the C1-puckering motion and the conjugation124

alteration of the ring part, consistent with our analysis of active coordinates. While the s125

vector represents that the Ethyl.II CI seam is characterized by different NH2 out-the-plane126

motions, also consistent with the channels A1B1, A1B2C1 and A1B2C2 are correlated127

to this CI. At the C=O stretching CI, the g vector includes the C=O elongation motion.128
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Ethyl Ⅱ

Ethyl Ⅰ

C=O 

stretching

g h s
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(g) (i)(h)

g h s

g h s

Figure S8. The orthogonal g, h and s vectors of three CIs (Ethyl.I, Ethyl.II and C=O
stretching)
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