Theoretical insights into the graphenylene-based triple-atom

catalysts for efficient nitrogen fixation

Zhili Yin,^{ac} Xingzi Fang,^b Ziyang Liu,^b Yan Gao,^b Ziqing Wang,^{*ac} Haifeng Wang^{*b} and Zhong Wei^{*ac}

^{*a*} School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China

^b Department of Physics, College of Science, Shihezi University, Xinjiang 832003, China

^c Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China

*E-mail: Steven_weiz@sina.com (Zhong Wei); whfeng@shzu.edu.cn (Haifeng Wang);

wzq20070420@163.com (Ziqing Wang)

Fig. S1. Optimization geometry structures and the corresponding energies of TM₃@GP in different (a) A, (b) B, and (c) C configurations.

Fig. S2. AIMD simulations run at 300 K for (a) Fe₃@GP, (b) Co₃@GP, (c) Ni₃@GP, (d) Mo₃@GP, (e) Ru₃@GP, (f) Rh₃@GP, (g) Pd₃@GP and (h) Pt₃@GP.

Fig. S3. The configurations of N_2 adsorption on $TM_3@GP$ systems.

Fig. S4. Bader charge transfer during the (a) enzymatic pathway of Rh₃@GP, consecutive pathway of (b) Fe₃@GP, (c) Co₃@GP and (d) Rh₃@GP.

Fig. S5. AIMD simulations run at 300 K for Mo₃@GP in water environment.

Fig.S6. Kinetic barrier from the *H + *N*N to *N*NH on Mo₃@GP.

Fig. S7. The NRR process of H-terminated Mo₃@GP by consecutive pathway.

Table S1. Fractional Coordinates of Mo₃@GP.

CONTCAR

1 0000000000000000000000000000000000000	0				
1.0000000000000000000000000000000000000	0				
13.508299827600	0001	0.000000000	00000000	0.0000000000000000000000000000000000000	00000
6.7529881567999	999	11.6989702353	39999991	0.0000000000000000000000000000000000000	0000
0.0749937988000	000	-0.0288168372	000000	19.728537056200	0004
C Mo					
48 3					
Direct					
0.2713085338385107	0.0′	77376736933698	0.410	2711727663714	
0.2715842316210381	0.1	77847881797297	0.410	4552784227321	
0.1616080147224922	0.0′	77716884034274	19 0.403	1832276684181	
0.4357870727502246	0.24	40825849826184	12 0.408	4848135900022	
0.4365098847762365	0.34	48889920453393	0.399	7693028894641	
0.3342502855156004	0.24	41027033676429	0.409	8519252671104	
0.0605279973636933	0.1′	78547659048179	0.398	3881631067653	
0.1619811203959177	0.23	87402722222985	55 0.403	7076031493691	
0.0607261139222597	0.23	88121236731601	0.398	6801787689992	
0.2249609266674674	0.34	48767334893593	34 0.402	2575673567492	
0.3359758239918317	0.44	49272999337405	59 0.389	6154294267611	
0.2246118732933000	0.44	49857777969758	36 0.390	6034047405329	
0.7717271269454700	0.0′	77891265448960	0.400	9235790406402	
0.7720121604607016	0.1′	78592537470107	0.395	8823444278174	
0.6626048373520242	0.0′	77567726822763	0.408	0741292534690	
0.9356898774934648	0.24	41316188766474	43 0.392	2615719188899	
0.9359167642019065	0.3	50828427345701	0.392	5346463480123	
0.8343785839970735	0.24	41372039233081	0.391	2992155463075	
0.5615273774189157	0.1′	78223770340432	20 0.407	9737183710227	
0.6621050043334746	0.23	88227238049013	0.395	3717822855705	
0.5615781216545828	0.23	87378943194110	06 0.4004	4987755478810	
0.7248008341971264	0.3	50958465182255	55 0.390	6993933016904	
0.8346540601631758	0.4	52285368613442	0.391	5231378579831	
0.7249901806324948	0.4	52297024710425	55 0.390	6469298531690	

0.2730568062998753	0.5733595163663165	0.3788023767813516
0.2741028067043573	0.6791392204202148	0.3795132639374412
0.1636633045929852	0.5724100927993362	0.3776453353617419
0.4374840569639029	0.7410298208791837	0.4001639953738875
0.4353766597276982	0.8501418067598319	0.4092675823043625
0.3366581734549795	0.7406224944615157	0.3887125222555089
0.0573181334885287	0.6789702751205532	0.3785313715698133
0.1641901144270453	0.7889850666330317	0.3806430031491154
0.0585348722656458	0.7882293117846620	0.3805761145653772
0.2250396175663608	0.8518937696397932	0.3899344793539856
0.3336228038382281	0.9516132527969796	0.4098795400495504
0.2247319063149251	0.9531326215879581	0.4017397011670731
0.7720845687462459	0.5773746977401468	0.3964948473417843
0.7714093672773082	0.6785316856175722	0.4022107657896184
0.6624631306060462	0.5774277235419125	0.3956148389149229
0.9345300199727961	0.7405057744316211	0.3911773212437066
0.9344003218961301	0.8516740326036875	0.3909950871878514
0.8332415372724757	0.7410840970966569	0.4021275029983493
0.5618842481608868	0.6785732740917383	0.4006663765397946
0.6618801698764576	0.7883454559564297	0.4094298855987895
0.5612309281840909	0.7882859941932130	0.4088338622387473
0.7256132382824524	0.8505345093511716	0.4100001385061963
0.8338876644205404	0.9526511179195101	0.4006115140921477
0.7256786908578993	0.9519399490616509	0.4088767012116173
0.2199166689744961	0.5669260671436238	0.4846931514254849
0.2354045445069191	0.7461327795260965	0.4843611314725456
0.0551301416117377	0.7316615363739948	0.4857596756635006

Table S2. Averaged bond lengths between TM-TM, averaged bond lengths between TM-C, Bader charge dispersion of $TM_3@GP$, binding energies and cohesive energies of $TM_3@GP$.

Name	d _{TM-T}	_{TM} /Å d _{TM}	4-c/Å	q _{TM3} / e	$q_{GP} / e $	E _b /e	eV E _{coh} /e	V
Fe ₃ @GP	2.3	33 2	.12	1.05	-1.05	-8.4	46 -4.28	3
Co ₃ @GP	2.2	29 2	.03	0.72	-0.72	-8.4	49 -4.39)
Ni ₃ @GP	2.3	37 2	.00	0.62	-0.62	-8.5	51 -4.44	1
Mo ₃ @GP	2.4	43 2	.22	1.47	-1.47	-10.	-6.82	2
Ru ₃ @GP	2.4	47 2	.08	0.66	-0.66	-11.	.05 -6.74	1
Rh ₃ @GP	2.6	51 2	.08	0.46	-0.46	-10.	.19 -5.75	5
Pd ₃ @GP	2.8	34 2	.14	0.33	-0.33	-6.3	35 -3.89)
Pt ₃ @GP	2.7	72 2	.12	0.04	-0.04	-9.	.6 -5.84	1
Table S3. The ΔG (H), ΔG (N ₂ -side on), ΔG (N ₂ -end on), ΔG (*N*NH) and ΔG (*NNH) of TM ₃ @GP.								ØGP.
Name	$\Delta G(H)$	ΔG (H)	ΔG (*N*N) d _{N-N/} Å	$\Delta G(*N_2)$	$d_{N\text{-}N/}\text{\AA}$	ΔG (*N*NH)	ΔG
	/eV	(on GP)/eV	/eV		/eV		/eV	(*NNH)
								/eV
GP	-	0.71	3.36	1.26	0.29	1.11	-	-

Fe ₃ @GP	-0.20	0.52	-0.72	1.27	-0.36	1.14	0.25	0.98
Co ₃ @GP	-0.53	1.04	-0.62	1.23	-0.64	1.14	0.48	1.11
Ni ₃ @GP	-0.76	1.00	-0.84	1.22	-0.90	1.14	0.72	1.38
Mo ₃ @GP	-0.74	0.40	-1.10	1.34	-0.76	1.14	-0.07	-
Ru ₃ @GP	-0.37	1.02	-	1.14	-0.81	1.14	-	1.09
Rh ₃ @GP	-0.12	0.90	-0.57	1.17	-0.66	1.13	0.54	1.14
Pd ₃ @GP	-0.13	1.10	-0.62	1.16	-0.63	1.13	1.28	1.71
Pt ₃ @GP	-0.70	1.06	-0.54	1.18	-0.99	1.13	-	1.33

Table S4. Zero-point and entropic corrections to the free energy of the gas phase and the adsorbed

species along different catalysts.							
Name	E/eV	E_{ZPE}/eV	TS/eV	G/eV			
H ₂	-6.76565715	0.268608	0.4019062	-6.89895535			
N_2	-16.62627336	0.149570	0.59182775	-17.06853111			
NH ₃	-19.54133424	0.909892	0.5951074	-19.22654964			
GP	-413.37	0	0	-413.37			
Fe ₃ @GP	-432.12	0	0	-432.12			
Co ₃ @GP	-427.74	0	0	-427.74			
Ni ₃ @GP	-424.07	0	0	-424.07			
Mo ₃ @GP	-437.30	0	0	-437.30			
Ru ₃ @GP	-432.01	0	0	-432.01			
Rh ₃ @GP	-428.48	0	0	-428.48			
Pd ₃ @GP	-424.16	0	0	-424.16			
Pt ₃ @GP	-424.74	0	0	-424.74			
	Fe ₃ @C	GP (Enzymatic pa	thway)				
*N*N	-449.99	0.18561	0.099618	-449.904008			
*N*NH	-453.52	0.50382	0.085801	-453.101981			
*NH*NH	-457.36	0.823844	0.094946	-456.631102			
*NH*NH ₂	-460.95	1.168633	0.108435	-459.889802			
*NH ₂ *NH ₂	-466.41	1.340669	0.234737	-465.304068			
*NH ₂	-449.41	0.698205	0.083244	-448.795039			
*NH ₃	-452.87	1.015197	0.142056	-451.996859			
	Co ₃ @0	GP (Enzymatic pa	athway)				
*N*N	-445.49	0.18042	0.124327	-445.433907			
*N*NH	-448.82	0.501535	0.086518	-448.404983			
*NH*NH	-452.87	0.802983	0.130019	-452.197036			
*NH*NH ₂	-456.43	1.138509	0.159026	-455.450517			
*NH ₂ *NH ₂	-461.98	1.346543	0.226595	-460.860052			
*NH ₂	-444.47	0.63491	0.119075	-443.954165			
*NH ₃	-448.52	1.002118	0.146887	-447.664769			
Mo ₃ @GP (Enzymatic pathway)							
*N*N	-455.58	0.186673	0.073783	-455.46711			
*N*NH	-459.4	0.499624	0.084625	-458.985001			
*NH*NH	-463.03	0.820132	0.093553	-462.303421			
*NH*NH ₂	-466.39	1.15969	0.124865	-465.355175			

*NH ₂ *NH ₂	-472.74	1.361142	0.2027	-471.581558				
*NH ₂	-454.99	0.691956	0.086646	-454.38469				
*NH ₃	-458.37	1.003909	0.138416	-457.504507				
	Rh ₃ @	GP (Enzymatic pa	thway)					
*N*N	-446.16	0.186399	0.14298	-446.116581				
*N*NH	-449.42	0.50363	0.111444	-449.027814				
*NH*NH	-453.19	0.811338	0.12861	-452.507272				
*NH*NH ₂	-457.04	1.151873	0.143378	-456.031505				
*NH ₂ *NH ₂	-460.53	1.472276	0.1366	-459.194324				
*NH ₂	-445.46	0.695031	0.082305	-444.847274				
*NH ₃	-449.36	1.011009	0.127279	-448.47627				
	Fe ₃ @C	P (Consecutive pa	athway)					
*N*N	-449.99	0.18561	0.099618	-449.904008				
*N*NH	-453.52	0.50382	0.085801	-453.101981				
*N*NH ₂	-457.34	0.852902	0.09843	-456.585528				
*N	-441.58	0.101384	0.022644	-441.50126				
*NH	-446.11	0.388591	0.038932	-445.760341				
*NH ₂	-449.38	0.697339	0.08454	-448.767201				
*NH ₃	-452.89	1.020663	0.20222	-452.071557				
	$Co_3@C$	GP (Consecutive page)	athway)					
*N*N	-445.49	0.18042	0.124327	-445.433907				
*N*NH	-448.82	0.501535	0.086518	-448.404983				
*N*NH ₂	-452.86	0.847563	0.104114	-452.116551				
*N	-436.94	0.100298	0.023561	-436.863263				
*NH	-441.13	0.366355	0.045842	-440.809487				
*NH ₂	-445.06	0.694582	0.085133	-444.450551				
*NH ₃	-448.53	0.999984	0.141344	-447.67136				
	Mo ₃ @0	GP (Consecutive p	athway)					
*N*N	-455.58	0.186673	0.073783	-455.46711				
*N*NH	-459.4	0.499624	0.084625	-458.985001				
*N*NH ₂	-463.12	0.84702	0.09983	-462.37281				
*N	-447.63	0.097551	0.02521	-447.557659				
*NH	-451.36	0.373562	0.04213	-451.028568				
*NH ₂	-455.1	0.694807	0.08389	-454.489083				
*NH ₃	-458.43	1.013529	0.135641	-457.552112				
Rh ₃ @GP (Consecutive pathway)								
*N*N	-446.16	0.186399	0.14298	-446.116581				
*N*NH	-449.42	0.50363	0.111444	-449.027814				
*N*NH ₂	-452.66	0.827756	0.123964	-451.956208				
*N	-436.08	0.077261	0.068644	-436.071383				
*NH	-440.28	0.309819	0.085644	-440.055825				
*NH ₂	-445.12	0.659192	0.134675	-444.595483				
*NH ₃	-449.35	1.011403	0.125413	-448.46401				