Chain Structure and β Conformation of Poly (9,9-dioctylfluorene) (PFO) with Different Molecular Weight Delivering from Solution to Film in Drop-casting Process

Tao Li, ${ }^{a, b}$ Qilong He, ${ }^{a}$ Yanan Guo, ${ }^{c}$ Yijia Guan, ${ }^{* a}$ Yuhua Zhang, ${ }^{a}$ Weijie Cao, ${ }^{a}$ Jieyi Qin, ${ }^{a}$ Jianguo Liao, ${ }^{a}$ Xuemao Guan, ${ }^{a}$ and Dan Lu ${ }^{*}$ c
${ }^{\text {a }}$ School of Materials Science and Engineering, Henan Polytechnic University, Henan, Jiaozuo 454000, China.
${ }^{\mathrm{b}}$ SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg DK-6400, Denmark.
c State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, China.

Supporting information

1. The calculation method of the proportion of $\boldsymbol{\beta}$-conformation in PFO film ${ }^{1}$.

The proportion of β conformation in PFO film can be calculated according to Lambert-Beer's law (Eq. S1), where c_{α} and c_{β} are the concentrations of α conformation and β conformation, respectively, A (obtained from experiments) is the absorbency and ε is the absorption coefficient. In UV-vis absorption spectra of PFO films, it is difficult to obtain the ε for α conformation and β conformation. Thus, we used the method of molecular simulation to the absorption spectra to calculate the proportion of $\varepsilon_{\beta} / \varepsilon_{\alpha}{ }^{2}$.
$\alpha \%+\beta \%=1$
$\beta \%=\frac{\mathrm{c}_{\beta}}{c_{\beta}+c_{\alpha}}=\frac{A_{\beta} \times \varepsilon_{\alpha}}{A_{\beta} \times \varepsilon_{\alpha}+A_{\alpha} \times \varepsilon_{\beta}}$
By defining six monomer units as the conjugation length ${ }^{3}$, we optimized the symmetry geometries of PFO chains for the approximate calculation of ε using Density Functional Theory (DFT) ${ }^{4}$. To calculate the oscillator strengths (f), Time-Dependent Density Functional Theory (TDDFT) was used ${ }^{5}$, as this method has been found to give reliable results ${ }^{6}$. DFT and TD-DFT are both with a B3LYP hybrid functional basis set level of $6-31 \mathrm{G}^{* 7}$. All calculations were performed using the Gaussian 03 package ${ }^{7}$.The oscillator strengths (f) of the two conformations are 4.46 for
α conformation at 386 nm and 4.83 for β conformation at 437 nm . Thus, the proportion of $\varepsilon_{\beta} / \varepsilon_{\alpha}$ can be obtained from Eq. S3 and Eq. S4, where k is a constant and v is the vibration frequency of two conformations. We can approximately calculate the proportion of β conformation in each UV-vis absorption spectra of PFO films using Eq. S2 and Eq. S4. Then the proportion of α conformation can be easily got by Eq. S1.
$f=k \int \varepsilon d v, \quad f \propto \varepsilon$
$\frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}=\frac{f_{\beta}}{f_{\alpha}}=\frac{4.83}{4.46}=1.08$
2. Calculation method of the aggregates of fractal dimension $\left(d_{f}\right)$ in solution by static light scattering (SLS)

In solution, the scattering intensity of polymer aggregates has the following power relationship with the test angle:

$$
I(q)=\left(K / R_{s}\right) C M_{\text {app }}\left(q R_{\text {app }}\right)_{f f}^{-d_{f}}
$$

Where $I(q)$ is the scattering light intensity, K is a constant factor, R_{s} is the solvent Rayleigh ratio, C is the polymer concentration, q is the scattering vector and $M_{a p p}$ and $R_{\text {app }}$ are the apparent mass and apparent radius, respectively. The fractal dimension d_{f} of the aggregation can be obtained from $I(q)$ and $q^{-d} f$.
3. Influence of Concentration on the $\boldsymbol{\beta}$ Conformation Formation of PFO in pure THF solvent.

Figure S1. Normalized UV-vis absorption spectra of sample of M4 at different concentrations of THF solutions

4. Relationship between the volatilization time and the $\boldsymbol{\beta}$ conformation contents which were calculated from Figure 9a and Figure 9c.

Table S1. the $\boldsymbol{\beta}$ conformation contents which were calculated from the normalized UV-vis absorption spectra of the films with the change of volatilization time when the initial concentration was $10 \mathrm{mg} / \mathrm{mL}$ and $20 \mathrm{mg} / \mathrm{mL}$.

	Volatilization time												
	0s	30s	60s	90s	120s	150s	180s	210s	240s	270s	300s	330s	360s
10mg/mL	0	4.5\%	21.0\%	29.0	32.8	34.5\%	35.4\%	35.9\%	36.2\%	36.3\%	36.4\%	36.5%	36.5\%
20mg/mL	0	8.6\%	26.3\%	34.8	36.7	37.0\%	37.2\%	37.3\%	37.3\%	37.4\%	37.4\%	37.5\%	37.5\%

REFERENCES

(1) Huang, L.; Huang, X. N.; Sun, G. N.; Gu, C.; Lu D.; Ma, Y. G. J. Phys. Chem. C 2012, 116, 7993-7999.
(2) Gu, C.; Tang, S.; Yang, B.; Liu, S. J.; Lv, Y.; Wang, H.; Yang, S. M.; Hanif, M.; Lu, D.; Shen, F.Z.; Ma, Y. G. Electrochim. Acta 2009, 54, 70067011.
(3) Ng, M. F.; Sun, S. L.; Zhang, R. Q. J. Appl. Phys. 2005, 97, 103513.
(4) Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864-871.
(5) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997-1000.
(6) Hirata, S.; Lee, T. J.; Gordon, M. H. J. Chem. Phys. 1999, 111, 89048912.
(7) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.

